

A111568


Triangle read by rows: row n contains n terms of the arithmetic progression having first term 1 and common difference 2[n^(n1)1]/(n1).


2



1, 1, 3, 1, 9, 17, 1, 43, 85, 127, 1, 313, 625, 937, 1249, 1, 3111, 6221, 9331, 12441, 15551, 1, 39217, 78433, 117649, 156865, 196081, 235297, 1, 599187, 1198373, 1797559, 2396745, 2995931, 3595117, 4194303, 1, 10761681, 21523361, 32285041
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Common difference of the row n arithmetic progression = A093461(n) (n>=2). Last term in row n = A093460(n). Sum of terms in row n = n^n=A000312(n).


LINKS



FORMULA

T(1, 0)=1; T(n, k)=1+2k[n^(n1)1]/(n1) if n>=2 and 0<=k<n.


EXAMPLE

Triangle starts:
1;
1,3;
1,9,17;
1,43,85,127;


MAPLE

T:=proc(n, k) if n=1 and k=0 then 1 elif n>1 and k<n then 1+2*k*(n^(n1)1)/(n1) else 0 fi end: for n from 1 to 9 do seq(T(n, k), k=0..n1) od; # yields sequence in triangular form


CROSSREFS



KEYWORD



AUTHOR



STATUS

approved



