login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209324
Triangular array read by rows: T(n,k) is the number of endofunctions f:{1,2,...,n}-> {1,2,...,n} whose largest component has exactly k nodes; n>=1, 1<=k<=n.
4
1, 1, 3, 1, 9, 17, 1, 45, 68, 142, 1, 165, 680, 710, 1569, 1, 855, 6290, 8520, 9414, 21576, 1, 3843, 47600, 134190, 131796, 151032, 355081, 1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296, 1, 114075, 5025608, 21488292, 50609664, 48934368, 51131664, 61247664, 148869153
OFFSET
1,3
COMMENTS
Here component means weakly connected component in the functional digraph of f.
Row sums are n^n.
T(n,n) = A001865.
For the statistic "length of the smallest component", see A347999.
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 8.
LINKS
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
FORMULA
E.g.f. for column k: exp( Sum_{n=1..k} A001865(n) x^n/n!) - exp( Sum_{n=1..k-1} A001865(n) x^n/n!).
Sum_{k=1..n} k * T(n,k) = A209327(n). - Alois P. Heinz, Dec 16 2021
EXAMPLE
Triangle T(n,k) begins:
1;
1, 3;
1, 9, 17;
1, 45, 68, 142;
1, 165, 680, 710, 1569;
1, 855, 6290, 8520, 9414, 21576;
1, 3843, 47600, 134190, 131796, 151032, 355081;
1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296;
...
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
seq(T(n), n=1..12); # Alois P. Heinz, Dec 16 2021
MATHEMATICA
nn=8; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; c=Log[1/(1-t)]; b=Drop[Range[0, nn]!CoefficientList[Series[c, {x, 0, nn}], x], 1]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Transpose[Table[Range[0, nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!, {i, 1, n+1}]]-Exp[Sum[b[[i]]x^i/i!, {i, 1, n}]], {x, 0, nn}], x], {n, 0, nn-1}]], 1]]//Grid
(* Second program: *)
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*b[n - i, Max[m, i]]* Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 1, n}]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A001865.
Row sums give A000312.
Sequence in context: A056843 A076806 A111568 * A121489 A118793 A247231
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 19 2013
STATUS
approved