OFFSET
1,3
COMMENTS
REFERENCES
R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 8.
LINKS
Alois P. Heinz, Rows n = 1..141, flattened
Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
FORMULA
Sum_{k=1..n} k * T(n,k) = A209327(n). - Alois P. Heinz, Dec 16 2021
EXAMPLE
Triangle T(n,k) begins:
1;
1, 3;
1, 9, 17;
1, 45, 68, 142;
1, 165, 680, 710, 1569;
1, 855, 6290, 8520, 9414, 21576;
1, 3843, 47600, 134190, 131796, 151032, 355081;
1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296;
...
MAPLE
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
seq(T(n), n=1..12); # Alois P. Heinz, Dec 16 2021
MATHEMATICA
nn=8; t=Sum[n^(n-1)x^n/n!, {n, 1, nn}]; c=Log[1/(1-t)]; b=Drop[Range[0, nn]!CoefficientList[Series[c, {x, 0, nn}], x], 1]; f[list_]:=Select[list, #>0&]; Map[f, Drop[Transpose[Table[Range[0, nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!, {i, 1, n+1}]]-Exp[Sum[b[[i]]x^i/i!, {i, 1, n}]], {x, 0, nn}], x], {n, 0, nn-1}]], 1]]//Grid
(* Second program: *)
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*b[n - i, Max[m, i]]* Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 1, n}]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Jan 19 2013
STATUS
approved