login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093461 a(1)=1, a(n) = 2*(n^(n-1)-1)/(n-1) for n >= 2. 3
1, 2, 8, 42, 312, 3110, 39216, 599186, 10761680, 222222222, 5187484920, 135092431034, 3883014187080, 122109965116022, 4170418003627232, 153722867280912930, 6082648984458358560, 257166065851611356702 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Proposition: n^(n-1) - 1 == 0 (mod (n-1)^2). Hence a(n) == 0 mod (n-1).

a(n) is the common difference of the arithmetic progression in row n of A111568. Written in base n, a(n) has n-1 digits equal to 2 (for example, a(10)=222222222). - Emeric Deutsch, Aug 08 2005

LINKS

Table of n, a(n) for n=1..18.

FORMULA

a(1) = 1, a(n) = 2*(n^(n-1) - 1)/(n-1) for n > 1.

MAPLE

a:=proc(n) if n=1 then 1 else 2*(n^(n-1)-1)/(n-1) fi end: seq(a(n), n=1..20); # Emeric Deutsch, Aug 08 2005

MATHEMATICA

f[n_] := (2*n^(n-1) - 2)/(n-1); Table[f[i], {i, 2, 30}] (* Ryan Propper, Aug 08 2005 *)

CROSSREFS

Cf. A093460, A093462.

Cf. A111568.

Sequence in context: A052646 A320343 A002856 * A191994 A153524 A153552

Adjacent sequences:  A093458 A093459 A093460 * A093462 A093463 A093464

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Apr 05 2004

EXTENSIONS

More terms from Emeric Deutsch and Ryan Propper, Aug 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 17:50 EDT 2021. Contains 343920 sequences. (Running on oeis4.)