

A111451


Number of partitions of P where P=(5*n + 1) if n is even and P=((5*n + 1)/2) if n is odd.


1



1, 3, 56, 22, 792, 101, 6842, 385, 44583, 1255, 239943, 3718, 1121505, 10143, 4697205, 26015, 18004327, 63261, 64112359, 147273, 214481126, 329931, 679903203, 715220, 2056148051, 1505499, 5964539504, 3087735, 16670689208
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS



EXAMPLE

If n=12 then P(5*n + 1) = 1121505.


MATHEMATICA

Table[ PartitionsP@If[EvenQ[n], 5n + 1, (5n + 1)/2], {n, 0, 30}] (* Robert G. Wilson v, Nov 15 2005 *)


PROG

(MuPAD) for n from 1 to 20 do if n/2 = trunc(n/2) then a := 5*n+1; end_if; if n/2 <> trunc(n/2) then a := (5*n+1)/2; end_if; print(combinat::partitions::count(a)); end_for; // Stefan Steinerberger, Nov 15 2005


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



