|
|
A111329
|
|
Number of partitions of T where T = (3n + 1) if n is even and T=(3n + 1)/2 if n is odd.
|
|
3
|
|
|
2, 15, 7, 101, 22, 490, 56, 1958, 135, 6842, 297, 21637, 627, 63261, 1255, 173525, 2436, 451276, 4565, 1121505, 8349, 2679689, 14883, 6185689, 26015, 13848650, 44583, 30167357, 75175, 64112359, 124754, 133230930, 204226, 271248950, 329931
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Table of n, a(n) for n=1..35.
Jeffrey C. Lagarias The 3x+1 problem: An annotated bibliography arXiv:math/0309224 [math.NT], 2003-2011.
Jeffrey C. Lagarias, "The Problem and Its Generalizations." Amer. Math. Monthly 92, 3-23, 1985.
Eric Weisstein's World of Mathematics, Collatz Problem
|
|
FORMULA
|
a(n) = A000041(A165355(n-1)). [Reinhard Zumkeller, Nov 19 2009]
|
|
EXAMPLE
|
If n=1 then T = 2 and a(1) = 2.
|
|
MATHEMATICA
|
f[n_] := If[EvenQ[n], PartitionsP[3n + 1], PartitionsP[(3n + 1)/2]]; Table[ f[n], {n, 35}] (* Robert G. Wilson v, Nov 07 2005 *)
|
|
CROSSREFS
|
Cf. A000546, A070165, A006577.
Sequence in context: A104773 A128759 A066582 * A344889 A059445 A077518
Adjacent sequences: A111326 A111327 A111328 * A111330 A111331 A111332
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Parthasarathy Nambi, Nov 04 2005
|
|
STATUS
|
approved
|
|
|
|