The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A111345 Pierpont 5-almost primes. 5-almost primes of form (2^K)*(3^L)+1. 6
 4375, 19684, 7077889, 7962625, 34012225, 100663297, 129140164, 452984833, 459165025, 544195585, 644972545, 918330049, 5159780353, 7346640385, 8589934593, 13947137605, 14495514625, 23219011585, 27518828545, 28991029249 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Eric Weisstein's World of Mathematics, Pierpont Prime Eric Weisstein's World of Mathematics, Almost Prime FORMULA a(n) is in this sequence iff there exist nonnegative integers K and L such that Omega((2^K)*(3^L)+1) = 5. EXAMPLE a(1) = 4375 = (2^1)*(3^7)+1 = 5 * 5 * 5 * 5 * 7. a(2) = 19684 = (2^0)*(3^9)+1 = 2 * 2 * 7 * 19 * 37. a(3) = 7077889 = (2^18)*(3^3)+1 = 7 * 13 * 13 * 31 * 193 (prime factors each have all odd digits). a(4) = 7962625 = (2^15)*(3^5)+1 = 5 * 5 * 5 * 11 * 5791 (again, coincidentally, prime factors each have all odd digits). a(7) = 129140164 = (2^0)*(3^17)+1 = 2 * 2 * 103 * 307 * 1021. a(15) = 8589934593 = (2^33)*(3^0)+1 = 3 * 3 * 67 * 683 * 20857. a(21) = 34359738369 = (2^35)*(3^0)+1 = 3 * 11 * 43 * 281 * 86171. a(30) = 793437161473 = (2^11)*(3^18)+1 = 11 * 11 * 11 * 43 * 13863281. a(32) = 847288609444 = (2^0)*(3^25)+1 = 2 * 2 * 61 * 151 * 22996651. a(47) = 68630377364884 = (2^0)*(3^29)+1 = 2 * 2 * 523 * 6091 * 5385997. a(48) = 70368744177665 = (2^46)*(3^0)+1 = 5 * 277 * 1013 * 1657 * 30269. a(81) = 50031545098999708 = (2^0)*(3^35)+1 = 2 * 2 * 61 * 547 * 374857981681. a(89) = 144115188075855873 = (2^57)*(3^0)+1 = 3 * 3 * 571 * 174763 * 160465489. a(99) = 450283905890997364 = (2^0)*(3^37)+1 = 2 * 2 * 18427 * 107671 * 56737873. a(113) = 4611686018427387905 = (2^62)*(3^0)+1 = 5 * 5581 * 8681 * 49477 * 384773. PROG (PARI) list(lim)=my(v=List(), L=lim\1-1); for(e=0, logint(L, 3), my(t=3^e); while(t<=L, if(bigomega(t+1)==5, listput(v, t+1)); t*=2)); Set(v) \\ Charles R Greathouse IV, Feb 01 2017 CROSSREFS Intersection of A014614 and A055600. A005109 gives the Pierpont primes, which are primes of the form (2^K)*(3^L)+1. A113432 gives the Pierpont semiprimes, 2-almost primes of the form (2^K)*(3^L)+1. A112797 gives the Pierpont 3-almost primes, of the form (2^K)*(3^L)+1. A111344 gives the Pierpont 4-almost primes, of the form (2^K)*(3^L)+1. A111346 gives the Pierpont 6-almost primes, of the form (2^K)*(3^L)+1. A113739 gives the Pierpont 7-almost primes, of the form (2^K)*(3^L)+1. A113740 gives the Pierpont 8-almost primes, of the form (2^K)*(3^L)+1. A113741 gives the Pierpont 9-almost primes, of the form (2^K)*(3^L)+1. Sequence in context: A203403 A206148 A230523 * A203874 A205317 A252645 Adjacent sequences: A111342 A111343 A111344 * A111346 A111347 A111348 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Nov 08 2005 EXTENSIONS Extended by Ray Chandler, Nov 08 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 26 22:13 EST 2023. Contains 359836 sequences. (Running on oeis4.)