



0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


COMMENTS

a(n) = A008621(n+1) = A002265(n+3).
A110656(n) = A110654(a(n)) = a(A110654(n)).


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,1).


FORMULA

a(n) = ceiling(n/4).
From Chai Wah Wu, May 29 2016: (Start)
a(n) = a(n1) + a(n4)  a(n5) for n>4.
G.f.: x/(x^5  x^4  x + 1). (End)


MAPLE

A110655:=n>ceil(n/4): seq(A110655(n), n=0..100); # Wesley Ivan Hurt, May 29 2016


MATHEMATICA

CoefficientList[Series[x/(x^5  x^4  x + 1), {x, 0, 100}], x] (* Wesley Ivan Hurt, May 29 2016 *)
LinearRecurrence[{1, 0, 0, 1, 1}, {0, 1, 1, 1, 1}, 50] (* G. C. Greubel, May 29 2016 *)


CROSSREFS

Cf. A002265, A008621, A110654, A110656, A110657.
Sequence in context: A300763 A002265 A242601 * A008621 A144075 A128929
Adjacent sequences: A110652 A110653 A110654 * A110656 A110657 A110658


KEYWORD

nonn,easy


AUTHOR

Reinhard Zumkeller, Aug 05 2005


STATUS

approved



