login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A110198
Diagonal sums of number triangle A110197.
3
1, 2, 4, 9, 20, 46, 109, 262, 638, 1569, 3886, 9680, 24225, 60856, 153368, 387573, 981742, 2491934, 6336721, 16139616, 41166912, 105139773, 268841100, 688157430, 1763206441, 4521749642, 11605580290, 29809644693, 76621733444
OFFSET
0,2
COMMENTS
Partial sums of A051286.
LINKS
FORMULA
G.f.: 1/((1-x)*sqrt((1+x+x^2)*(1-3x+x^2))); a(n) = sum{k=0..floor(n/2), sum{i=0..n-2k, binomial(i+k, k)^2}}.
a(n) = sum{i=0..2n, A202411(i)}. - Peter Luschny, Jan 16 2012
Conjecture: n*a(n) +(-3*n+1)*a(n-1) +n*a(n-2) +(-n+2)*a(n-3) +(3*n-5)*a(n-4) +(-n+2)*a(n-5)=0. - R. J. Mathar, Nov 15 2012
a(n) ~ sqrt(100+45*sqrt(5)) * ((sqrt(5)+3)/2)^n / (10*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 08 2014
Equivalently, a(n) ~ phi^(2*n + 3) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
MATHEMATICA
CoefficientList[Series[1/((1-x)*Sqrt[(1+x+x^2)*(1-3*x+x^2)]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
CROSSREFS
Cf. A201631.
Sequence in context: A052806 A329672 A218552 * A104508 A368830 A036623
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 15 2005
STATUS
approved