

A109914


Product of all composite numbers k such that n! < k < prime(r) where prime(r1)< n!.


2



1, 1, 1, 491400, 3546112878000, 143424700959632400, 10691567972893973348743970911396896000, 210948344078434820704169472200928966427054605885088717074131707385374604732966434908020301638860800000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,4


COMMENTS

k divides n!.
If n is in A002981, then a(n) is  by definition  1. If not, then none of the numbers n!+1, n!+2, ... n!+n will be prime, which gives us the lower bound a(n) > (n!+1)^n.  Stefan Steinerberger, Mar 14 2006


LINKS



EXAMPLE

a(4) = 25*26*27*28 =491400.


MATHEMATICA

Table[Product[i, {i, n! + 1, Prime[PrimePi[n! ] + 1]  1}], {n, 1, 8}] (* Stefan Steinerberger, Mar 14 2006 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



