login
A109291
New factors appearing in the factorization of 5^k - 2^k as k increases.
0
3, 7, 13, 29, 1031, 19, 25999, 641, 5563, 11, 41, 1409, 11551, 541, 406898311, 1597, 31, 8161, 17, 22993, 82009, 3101039, 37, 397, 6357828601279, 61, 5521, 43, 1009, 3613, 23, 303293, 7591, 197479, 2650751, 380881, 151, 95801, 6660751, 53, 131, 25117, 1271899175923
OFFSET
1,1
COMMENTS
Zsigmondy numbers for a = 5, b = 2: Zs(n, 5, 2) is the greatest divisor of 5^k - 2^k that is relatively prime to 5^j - 2^j for all positive integers j < k.
LINKS
Eric Weisstein's World of Mathematics, Zsigmondy's Theorem
EXAMPLE
a(1) = 3 because 5^1 - 2^1 = 3.
a(2) = 7 because, although 5^2 - 2^2 = 21 = 3 * 7 has prime factor 3, that has already appeared in this sequence, but the factor of 7 is new.
a(3) = 13 because, although 5^3 - 2^3 = 117 = 3^2 * 13 has repeated prime factor 3, that has already appeared in this sequence, but the prime factor of 13 is new.
a(4) = 29 because, although 5^4 - 2^4 = 2385 = 609 = 3 * 7 * 29, the prime factors of 3 and 7 have already appeared in this sequence, but the prime factor of 29 is new.
a(5) = 1031 because, although 5^5 - 2^5 = 16775 = 3093 = 3 * 1031, the prime factor of 3 has already appeared in this sequence, but the prime factors of 1031 is new.
PROG
(PARI) lista(nn) = {my(pf = []); for (k=1, nn, f = factor(5^k-2^k)[, 1]; for (j=1, #f~, if (!vecsearch(pf, f[j]), print1(f[j], ", "); pf = vecsort(concat(pf, f[j]))); ); ); } \\ Michel Marcus, Nov 13 2016
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Aug 25 2005
EXTENSIONS
Comment corrected by Jerry Metzger, Nov 04 2009
More terms from Michel Marcus, Nov 13 2016
STATUS
approved