%I
%S 2,3,8,4,11,20,5,14,26,40,6,17,32,50,70,7,20,38,60,85,112,8,23,44,70,
%T 100,133,168,9,26,50,80,115,154,196,240,10,29,56,90,130,175,224,276,
%U 330,11,32,62,100,145,196,252,312,375,440,12,35,68,110,160,217,280
%N Triangular array: the selffission of (p(n,x)), where p(n,x)=x*p(n1,x)+n+1, where p(0,x)=1.
%C See A193842 for the definition of fission of two sequences of polynomials or triangular arrays.
%e First six rows:
%e 2
%e 3...8
%e 4...11...20
%e 5...14...26...40
%e 6...17...32...50...70
%e 7...20...38...60...85...112
%t z = 11;
%t p[0, x_] := 1; p[n_, x_] := x*p[n  1, x] + n + 1;
%t q[n_, x_] := p[n, x];
%t p1[n_, k_] := Coefficient[p[n, x], x^k];
%t p1[n_, 0] := p[n, x] /. x > 0;
%t d[n_, x_] := Sum[p1[n, k]*q[n  1  k, x], {k, 0, n  1}]
%t h[n_] := CoefficientList[d[n, x], {x}]
%t TableForm[Table[Reverse[h[n]], {n, 0, z}]]
%t Flatten[Table[Reverse[h[n]], {n, 1, z}]] (* A193975 *)
%t TableForm[Table[h[n], {n, 0, z}]]
%t Flatten[Table[h[n], {n, 1, z}]] (* A193976 *)
%Y Cf. A193842, A193976.
%K nonn,tabl
%O 0,1
%A _Clark Kimberling_, Aug 10 2011
