login
A108894
Numbers k such that (k!/k#) * 2^k + 1 is prime, where n# = primorial numbers (A034386).
1
0, 1, 2, 11, 17, 25, 38, 53, 107, 245, 255, 367, 719, 1077, 2189, 2853, 3236, 3511, 3633, 4531, 4858, 5422, 7787, 8319
OFFSET
1,3
COMMENTS
n!/n# is known as n compositorial. All values have been proved prime. No more terms up to 6100. Primality proof for the largest, which has 17219 digits: PFGW Version 1.2.0 for Windows [FFT v23.8] Primality testing (5422!/5422#)*(2^5422)+1 [N-1, Brillhart-Lehmer-Selfridge] Running N-1 test using base 2719 Calling Brillhart-Lehmer-Selfridge with factored part 36.34% (5422!/5422#)*(2^5422)+1 is prime! (66.5095s+0.0129s)
MATHEMATICA
f[n_] := n!/Fold[Times, 1, Prime[ Range[ PrimePi[ n]]]]*2^n + 1; Do[ If[ PrimeQ[ f[n]], Print[n]], {n, 0, 1100}] (* Robert G. Wilson v, Jul 18 2005 *)
CROSSREFS
Sequence in context: A282509 A225590 A060427 * A233445 A066794 A087379
KEYWORD
more,nonn
AUTHOR
Jason Earls, Jul 15 2005
EXTENSIONS
a(23)-a(24) from Michael S. Branicky, Oct 01 2024
STATUS
approved