login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091421
Numbers m such that m#*2^m - 1 is prime, where m# = A002110(m).
2
1, 2, 3, 4, 6, 7, 8, 15, 19, 31, 68, 69, 78, 82, 162, 210, 524, 770, 1058, 1437, 1730, 3977, 5104, 8440
OFFSET
1,2
COMMENTS
1# = 2 2# = 2*3 = 6 3# = 2*3*5 = 30.
No more terms < 5000. - L. Joris Perrenet, Mar 17 2020
EXAMPLE
a(1) = 1 because 1#*2^1 - 1 = 3 is prime.
a(2) = 2 because 2#*2^2 - 1 = 23 is prime.
MATHEMATICA
For[n = 1, n < 60, n++, If[PrimeQ[2^n*Product[Prime[i], {i, 1, n}] - 1], Print[n]]] (* Stefan Steinerberger, Feb 06 2006 *)
PROG
(PARI) pp(n)= s=1; for(i=1, n, s=s*prime(i)); return(s);
f(n)=pp(n)!*2^n -1;
for (i=1, 500, if(isprime(f(i)), print1(i, ", ")))
CROSSREFS
Sequence in context: A096360 A039087 A093710 * A138936 A135604 A345437
KEYWORD
nonn,hard,more
AUTHOR
Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 02 2004
EXTENSIONS
a(17) from Stefan Steinerberger, Feb 06 2006
a(18)-a(22) from L. Joris Perrenet, Mar 17 2020
a(23)-a(24) from Michael S. Branicky, Aug 28 2024
STATUS
approved