|
|
A091421
|
|
Numbers n such that n#*2^n - 1 is prime, where n# is product of prime numbers (primorials).
|
|
1
|
|
|
1, 2, 3, 4, 6, 7, 8, 15, 19, 31, 68, 69, 78, 82, 162, 210, 524, 770, 1058, 1437, 1730, 3977
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
1# = 2 2# = 2*3 = 6 3# = 2*3*5 = 30.
|
|
LINKS
|
|
|
EXAMPLE
|
a(1)=1 because 1#*2^1 - 1 = 3 is prime.
a(2)=2 because 2#*2^2 - 1 = 23 is prime.
|
|
MATHEMATICA
|
For[n = 1, n < 60, n++, If[PrimeQ[2^n*Product[Prime[i], {i, 1, n}] - 1], Print[n]]] (* Stefan Steinerberger, Feb 06 2006 *)
|
|
PROG
|
(PARI) pp(n)= s=1; for(i=1, n, s=s*prime(i)); return(s);
f(n)=pp(n)!*2^n -1;
for (i=1, 500, if(isprime(f(i)), print1(i, ", ")))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 02 2004
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|