|
|
A091423
|
|
G.f.: ((1 + x^9)*(1 + x^(15)) ) / ( (1 - x^3)*(1 - x^5)*(1 - x^8)*(1 - x^(12))).
|
|
0
|
|
|
1, 0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 2, 3, 2, 3, 5, 3, 5, 6, 4, 8, 8, 6, 10, 12, 10, 12, 15, 13, 17, 19, 16, 23, 24, 21, 28, 30, 28, 33, 37, 36, 41, 44, 42, 51, 54, 50, 60, 65, 62, 70, 75, 74, 83, 87, 86, 98, 102, 99, 112, 119, 116, 127, 135, 135, 147, 152, 152, 168, 174, 172, 188, 198, 196
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,9
|
|
COMMENTS
|
Poincaré series [or Poincare series] (or Molien series) for F_2[x_1..x_4]^(A_6).
|
|
REFERENCES
|
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, last page of Chapter III.
|
|
LINKS
|
Index entries for linear recurrences with constant coefficients, signature (1, -1, 3, -3, 4, -6, 6, -7, 9, -9, 9, -10, 9, -9, 9, -7, 6, -6, 4, -3, 3, -1, 1, -1).
|
|
FORMULA
|
G.f.: (1-x+x^2) *(x^4-x^3+x^2-x+1) *(x^6-x^3+1) *(x^8+x^7-x^5-x^4-x^3+x+1) / ( (x^4+x^3+x^2+x+1) *(x^4-x^2+1) *(x^4+1) *(x^2+1)^2 *(1+x+x^2)^2 *(x-1)^4 ). - R. J. Mathar, Dec 18 2014
|
|
PROG
|
(PARI) Vec(((1 + x^9)*(1 + x^(15)))/((1 - x^3)*(1 - x^5)*(1 - x^8)*(1 - x^(12))) + O(x^80)) \\ Jinyuan Wang, Mar 10 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|