The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A091423 G.f.: ((1 + x^9)*(1 + x^(15)) ) / ( (1 - x^3)*(1 - x^5)*(1 - x^8)*(1 - x^(12))). 0
 1, 0, 0, 1, 0, 1, 1, 0, 2, 2, 1, 2, 3, 2, 3, 5, 3, 5, 6, 4, 8, 8, 6, 10, 12, 10, 12, 15, 13, 17, 19, 16, 23, 24, 21, 28, 30, 28, 33, 37, 36, 41, 44, 42, 51, 54, 50, 60, 65, 62, 70, 75, 74, 83, 87, 86, 98, 102, 99, 112, 119, 116, 127, 135, 135, 147, 152, 152, 168, 174, 172, 188, 198, 196 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Poincaré series [or Poincare series] (or Molien series) for F_2[x_1..x_4]^(A_6). REFERENCES A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004, last page of Chapter III. LINKS Table of n, a(n) for n=0..73. Index entries for linear recurrences with constant coefficients, signature (1, -1, 3, -3, 4, -6, 6, -7, 9, -9, 9, -10, 9, -9, 9, -7, 6, -6, 4, -3, 3, -1, 1, -1). FORMULA G.f.: (1-x+x^2) *(x^4-x^3+x^2-x+1) *(x^6-x^3+1) *(x^8+x^7-x^5-x^4-x^3+x+1) / ( (x^4+x^3+x^2+x+1) *(x^4-x^2+1) *(x^4+1) *(x^2+1)^2 *(1+x+x^2)^2 *(x-1)^4 ). - R. J. Mathar, Dec 18 2014 PROG (PARI) Vec(((1 + x^9)*(1 + x^(15)))/((1 - x^3)*(1 - x^5)*(1 - x^8)*(1 - x^(12))) + O(x^80)) \\ Jinyuan Wang, Mar 10 2020 CROSSREFS Sequence in context: A029291 A333529 A022872 * A221914 A264401 A173304 Adjacent sequences: A091420 A091421 A091422 * A091424 A091425 A091426 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Mar 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 02:05 EST 2023. Contains 367530 sequences. (Running on oeis4.)