login
A108701
Values of n such that n^2-2 and n^2+2 are both prime.
16
3, 9, 15, 21, 33, 117, 237, 273, 303, 309, 387, 429, 441, 447, 513, 561, 573, 609, 807, 897, 1035, 1071, 1113, 1143, 1233, 1239, 1311, 1563, 1611, 1617, 1737, 1749, 1827, 1839, 1953, 2133, 2211, 2283, 2589, 2715, 2721, 2955, 3081, 3093, 3453, 3549, 3555, 3621, 3723, 3807
OFFSET
1,1
COMMENTS
Since x^2 + 2 is divisible by 3 unless x is divisible by 3, all elements are 3 mod 6.
Intersection of A067201 and A028870. - Robert Israel, Sep 11 2014
REFERENCES
David Wells, Prime Numbers, John Wiley and Sons, 2005, p. 219 (article:'Siamese primes')
LINKS
Raymond A. Beauregard and E. R. Suryanarayan, Square-plus-two primes, Mathematical Gazette 85(502) 90-1.
EXAMPLE
21 is on the list since 21^2 - 2 = 439 and 21^2 + 2 = 443 are primes.
MAPLE
select(n -> isprime(n^2-2) and isprime(n^2+2), [seq(6*i+3, i=0..1000)]); # Robert Israel, Sep 11 2014
MATHEMATICA
Select[Range[5000], PrimeQ[#^2 - 2] && PrimeQ[#^2 + 2] &] (* Alonso del Arte, Sep 11 2014 *)
PROG
(Magma) [n: n in [3..3600 by 6] | IsPrime(n^2-2) and IsPrime(n^2+2)]; // Bruno Berselli, Apr 15 2011
(PARI) is(n)=isprime(n^2-2)&&isprime(n^2+2) \\ Charles R Greathouse IV, Jul 02 2013
CROSSREFS
Subsequence of A016945.
Sequence in context: A276967 A114271 A137164 * A064539 A029482 A174786
KEYWORD
nonn,easy
AUTHOR
John L. Drost, Jun 19 2005
EXTENSIONS
Terms corrected by Charles R Greathouse IV, Sep 11 2014
STATUS
approved