login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108452
Number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids of the first kind (a pyramid of the first kind is a sequence u^pd^p for some positive integer p, starting at the x-axis).
2
1, 1, 6, 44, 344, 2856, 24816, 223016, 2056256, 19344472, 184956240, 1792088296, 17558218048, 173659691928, 1731556718224, 17387182158184, 175670235597120, 1784561125349464, 18216639085961552, 186762117058304104
OFFSET
0,3
COMMENTS
Also number of paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1),U=(1,2), or d=(1,-1) and having no pyramids of the second kind (a pyramid of the second kind is a sequence U^pd^(2p) for some positive integer p, starting at the x-axis). Column 0 of A108451.
LINKS
Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
FORMULA
G.f.: (1-z)/[1-z(1-z)A(1+A)], where A=1+zA^2+zA^3=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3 (the g.f. of A027307).
From Vaclav Kotesovec, Mar 18 2014: (Start)
G.f. y(x) satisfies: -1 + 3*x - 3*x^2 + x^3 + y - 3*x^2*y + 2*x^3*y - 3*x*y^2 + 4*x^2*y^2 - 2*x^3*y^2 + x^4*y^2 - x*y^3 + 5*x^2*y^3 - 5*x^3*y^3 + 2*x^4*y^3 = 0
a(n) ~ (11+5*sqrt(5))^n * sqrt(247+603/sqrt(5)) / (5*sqrt(Pi)*n^(3/2) *2^(n+7/2))
Recurrence: n*(2*n + 1)*(6050*n^7 - 126115*n^6 + 1112432*n^5 - 5378320*n^4 + 15373805*n^3 - 25927435*n^2 + 23799813*n - 9117270)*a(n) = (193600*n^9 - 4138530*n^8 + 37940769*n^7 - 194878383*n^6 + 614482575*n^5 - 1224753180*n^4 + 1530842816*n^3 - 1150685847*n^2 + 475947900*n - 86751000)*a(n-1) - 2*(356950*n^9 - 7743285*n^8 + 72449748*n^7 - 382786506*n^6 + 1254763140*n^5 - 2635287165*n^4 + 3523007792*n^3 - 2857685139*n^2 + 1247080365*n - 211094100)*a(n-2) + (629200*n^9 - 13618110*n^8 + 127285773*n^7 - 672901416*n^6 + 2211415230*n^5 - 4666850055*n^4 + 6281980307*n^3 - 5134608429*n^2 + 2249815860*n - 375921000)*a(n-3) - (205700*n^9 - 4402860*n^8 + 40747203*n^7 - 213640971*n^6 + 697768275*n^5 - 1466844360*n^4 + 1971190342*n^3 - 1610202339*n^2 + 703447650*n - 115668000)*a(n-4) - 2*(n-5)*(2*n - 9)*(6050*n^7 - 83765*n^6 + 482792*n^5 - 1496135*n^4 + 2674295*n^3 - 2716295*n^2 + 1400898*n - 257040)*a(n-5)
(End)
D-finite with recurrence +n*(2*n+1)*(72425*n-317734)*a(n) +(-3140100*n^3+18675553*n^2-20491436*n+6673146)*a(n-1) +(22916600*n^3-190703953*n^2+432061605*n-302985732)*a(n-2) +2*(-37979850*n^3+409247558*n^2-1317355900*n+1324935945)*a(n-3) +3*(41724600*n^3-547102003*n^2+2263591341*n-2982348982)*a(n-4) +3*(-36023800*n^3+545643269*n^2-2684061391*n+4314486328)*a(n-5) +(46638250*n^3-790948395*n^2+4390868696*n-7976355570)*a(n-6) +(-6636700*n^3+127715416*n^2-812847607*n+1708833588)*a(n-7) -2*(266400*n-1297177)*(2*n-15)*(n-8)*a(n-8)=0. - R. J. Mathar, Jul 26 2022
EXAMPLE
a(2)=6 because the paths uUddd, UddUdd, Ududd, UdUddd, Uuddd and UUdddd have no pyramids of the first kind.
MAPLE
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: g:=(1-z)/(1-z*(1-z)*A*(1+A)): gser:=series(g, z=0, 24): 1, seq(coeff(gser, z^n), n=1..21);
PROG
(PARI) {a(n)=local(y=1+x); for(i=1, n, y = -(-1 + 3*x - 3*x^2 + x^3 - 3*x^2*y + 2*x^3*y - 3*x*y^2 + 4*x^2*y^2 - 2*x^3*y^2 + x^4*y^2 - x*y^3 + 5*x^2*y^3 - 5*x^3*y^3 + 2*x^4*y^3) + (O(x^n))^4); polcoeff(y, n)}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Mar 18 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 11 2005
STATUS
approved