login
A108427
Number of peaks of the form Ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1).
3
1, 9, 85, 833, 8361, 85305, 880685, 9173505, 96220561, 1014889769, 10753517061, 114375683009, 1220435354425, 13058529727833, 140059477112925, 1505357362548737, 16209464357137953, 174827809500822345, 1888383038494338485, 20424130116241366593, 221164921352046545609, 2397512484385887298681
OFFSET
1,2
LINKS
Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370.
FORMULA
a(n) = (1/n)*Sum_{k=0..n} k*binomial(n, k)*binomial(3n-k, n-1).
Recurrence: 9*n*(2*n-3)*a(n) = (202*n^2 - 414*n + 185)*a(n-1) - (26*n^2 - 175*n + 255)*a(n-2) - 2*(n-3)*(2*n-5)*a(n-3), for n>3. - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(30*sqrt(5)-50)*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012. Equivalently, a(n) ~ phi^(5*n - 1) / (2* 5^(1/4) * sqrt(Pi*n)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021
G.f.: A(x) = 1/2*(x*B'(x)/B(x)-1), where B(x) satisfies B(x) = x*((1-2*B(x))/(2*(1-4*B(x))) + 1/(2*sqrt(1-4*B(x)))). - Vladimir Kruchinin, Oct 06 2015
a(n) = binomial(3*n-1, n-1)*hypergeom([1-n, -2*n], [1-3*n], -1). - Peter Luschny, Oct 06 2015
a(n) = hypergeom([-n, n, -n + 1], [1/2, 1], 1). - Peter Luschny, Mar 14 2018
a(n) = P(n-1, n+1, 0, 3), where P is the Jacobi Polynomial. - Richard Turk, Jun 25 2018
EXAMPLE
a(2)=9 because we have ud(Ud)d, u(Ud)dd, (Ud)dud, (Ud)d(Ud)d, (Ud)udd, (Ud)(Ud)dd, U(Ud)ddd (the peaks of the form Ud shown between parentheses).
G.f. = x + 9*x^2 + 85*x^3 + 833*x^4 + 8361*x^5 + 85305*x^6 + 880685*x^7 + ... - Michael Somos, Jul 01 2018
MAPLE
seq(add(k*binomial(n, k)*binomial(3*n-k, n-1)/n, k=0..n), n=1..22);
a := n -> binomial(3*n-1, n-1)*hypergeom([1-n, -2*n], [1-3* n], -1); seq(round(evalf(a(n), 32)), n=1..22); # Peter Luschny, Oct 06 2015
MATHEMATICA
Table[1/n*Sum[k*Binomial[n, k]*Binomial[3n - k, n-1], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 17 2012 *)
a[n_] := HypergeometricPFQ[{-n, n, -n + 1}, {1/2, 1}, 1];
Table[a[n], {n, 1, 22}] (* Peter Luschny, Mar 14 2018 *)
a[ n_] := JacobiP[n - 1, n + 1, 0, 3]; (* Michael Somos, Jul 01 2018 *)
PROG
(PARI) a(n) = (1/n)*sum(k=0, n, k*binomial(n, k)*binomial(3*n-k, n-1)); \\ Joerg Arndt, May 15 2013
(Maxima)
G(z):=z*((2/3)*sqrt((z+3)/z)*sin((1/3)*asin(sqrt(z)*(z+18) / (z+3)^(3/2)))+2/3);
taylor(diff(G(z), z, 1)/G(z)-1/z, z, 0, 20); /* Vladimir Kruchinin, Oct 06 2015 */
CROSSREFS
Sequence in context: A015580 A163308 A160112 * A152106 A142982 A218136
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jun 03 2005
STATUS
approved