

A108347


Numbers of the form (3^i)*(5^j)*(7^k), with i, j, k >= 0.


5



1, 3, 5, 7, 9, 15, 21, 25, 27, 35, 45, 49, 63, 75, 81, 105, 125, 135, 147, 175, 189, 225, 243, 245, 315, 343, 375, 405, 441, 525, 567, 625, 675, 729, 735, 875, 945, 1029, 1125, 1215, 1225, 1323, 1575, 1701, 1715, 1875, 2025, 2187, 2205, 2401, 2625, 2835, 3087
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Heinz numbers of the partitions into parts 2,3, and 4 (including the number 1, the Heinz number of the empty partition). We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_jth prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [2,3,3,4] the Heinz number is 3*5*5*7 = 525; it is in the sequence.  Emeric Deutsch , May 21 2015
Numbers m  105^e with integer e >= 0.  Michael De Vlieger, Aug 22 2019


LINKS

Michael De Vlieger, Table of n, a(n) for n = 1..10000


MAPLE

with(numtheory): S := {}: for j to 3100 do if `subset`(factorset(j), {3, 5, 7}) then S := `union`(S, {j}) else end if end do: S; # Emeric Deutsch, May 21 2015


MATHEMATICA

With[{n = 3087}, Sort@ Flatten@ Table[3^i * 5^j * 7^k, {i, 0, Log[3, n]}, {j, 0, Log[5, n/2^i]}, {k, 0, Log[7, n/(3^i*5^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)


PROG

(MAGMA) [n: n in [1..4000]  PrimeDivisors(n) subset [3, 5, 7]]; // Bruno Berselli, Sep 24 2012


CROSSREFS

Cf. A003586, A003591A003595, A051037, A108319, A108513, A215366.
Sequence in context: A290426 A211137 A056761 * A211128 A211129 A211127
Adjacent sequences: A108344 A108345 A108346 * A108348 A108349 A108350


KEYWORD

nonn


AUTHOR

Douglas Winston (douglas.winston(AT)srupc.com), Jul 01 2005


STATUS

approved



