login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108319
Numbers of the form (2^i)*(3^j)*(7^k), with i, j, k >= 0.
7
1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 18, 21, 24, 27, 28, 32, 36, 42, 48, 49, 54, 56, 63, 64, 72, 81, 84, 96, 98, 108, 112, 126, 128, 144, 147, 162, 168, 189, 192, 196, 216, 224, 243, 252, 256, 288, 294, 324, 336, 343, 378, 384, 392, 432, 441, 448, 486, 504, 512, 567
OFFSET
1,2
COMMENTS
Numbers m | 42^e with integer e >= 0. - Michael De Vlieger, Aug 22 2019
Sum_{n>=1} 1/a(n) = (2*3*7)/((2-1)*(3-1)*(7-1)) = 7/2. - Amiram Eldar, Sep 24 2020
LINKS
FORMULA
a(n) ~ exp((6*log(2)*log(3)*log(7)*n)^(1/3)) / sqrt(42). - Vaclav Kotesovec, Sep 23 2020
MATHEMATICA
With[{n = 567}, Sort@ Flatten@ Table[2^i * 3^j * 7^k, {i, 0, Log2@ n}, {j, 0, Log[3, n/2^i]}, {k, 0, Log[7, n/(2^i*3^j)]}]] (* Michael De Vlieger, Aug 22 2019 *)
PROG
(PARI) list(lim)=my(v=List(), s, t); for(i=0, logint(lim\=1, 7), t=7^i; for(j=0, logint(lim\t, 3), s=t*3^j; while(s<=lim, listput(v, s); s<<=1))); Set(v) \\ Charles R Greathouse IV, Nov 20 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Douglas Winston (douglas.winston(AT)srupc.com), Jun 30 2005
STATUS
approved