login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108257
Numbers k such that concatenating k and the sum of factorials of the digits of k produces a prime.
1
1, 13, 15, 30, 31, 91, 101, 110, 128, 133, 136, 138, 144, 152, 156, 166, 175, 193, 199, 203, 215, 230, 250, 260, 280, 281, 303, 304, 306, 307, 309, 315, 320, 330, 331, 340, 361, 391, 412, 508, 520, 550, 606, 651, 661, 681, 708, 712, 717, 730, 750, 751, 780
OFFSET
1,2
COMMENTS
The largest prime I have found pertaining to this sequence is A109016(Fibonacci(9837)) with 2064 digits (not proved prime, only Fermat and Lucas PRP).
LINKS
EXAMPLE
193 is in the sequence because 1!+9!+3! = 362887 and 193362887 is prime.
MATHEMATICA
Select[Range[780], PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[Total[IntegerDigits[#]!]]]]]&] (* James C. McMahon, Feb 22 2024 *)
PROG
(Python)
from math import factorial
from sympy import isprime
def ok(n):
return isprime(int((s:=str(n))+str(sum(factorial(int(d)) for d in s))))
print([k for k in range(999) if ok(k)]) # Michael S. Branicky, Feb 22 2024
CROSSREFS
Sequence in context: A227449 A371287 A113801 * A217252 A299593 A318543
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jun 18 2005
STATUS
approved