|
|
A108260
|
|
Consider primes p and q such that p = 3^k + 14 and q = 3^(k+1) + 14 for some k; sequence gives values of p.
|
|
0
|
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
There are no additional terms up to k=2000, which generates a 955-digit nonprime candidate number for p. - Harvey P. Dale, Aug 17 2014
|
|
LINKS
|
|
|
EXAMPLE
|
3^1 + 14 = 17, 3^2 + 14 = 23.
|
|
MATHEMATICA
|
Transpose[Select[Table[{3^k+14, 3^(k+1)+14}, {k, 10}], AllTrue[ #, PrimeQ]&]] [[1]] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Aug 17 2014 *)
|
|
PROG
|
(PARI) g(m, n, b) = { for(x=0, n, y=m+b^x+b%2; z=m+b^(x+1)+b%2; if(isprime(y)&isprime(z), print1(y", ") ) ) }
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|