login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108195
a(n) = n^2 + 5*n - 1.
6
5, 13, 23, 35, 49, 65, 83, 103, 125, 149, 175, 203, 233, 265, 299, 335, 373, 413, 455, 499, 545, 593, 643, 695, 749, 805, 863, 923, 985, 1049, 1115, 1183, 1253, 1325, 1399, 1475, 1553, 1633, 1715, 1799, 1885, 1973, 2063, 2155, 2249, 2345, 2443, 2543, 2645, 2749
OFFSET
1,1
COMMENTS
a(n-2) = n*(n + 1) - 7, n >= 0, with a(-2) = -7, a(-1) = -5 and a(0) = -1, gives the values for a*c of indefinite binary quadratic forms [a, b, c] of discriminant D = 29 for b = 2*n + 1. In general D = b^2 - 4*a*c > 0 and the form [a, b, c] is a*x^2 + b*x*y + c*y^2. - Wolfdieter Lang, Aug 16 2013
Numbers m such that 4*m + 29 is an odd square, starting with 7^2 = A016754(3). - Bruce J. Nicholson, Jul 11 2017
LINKS
Eric Weisstein's World of Mathematics, Greek Cross.
Eric Weisstein's World of Mathematics, Gaullist Cross.
FORMULA
For n > 1: a(n) = A176271(n+2,n-1). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) + 4, with n > 1, a(1)=5. - Vincenzo Librandi, Nov 13 2010
G.f.: x*(5 - 2*x - x^2)/(1 - x)^3. - Vincenzo Librandi, Jun 11 2014
From Elmo R. Oliveira, Nov 01 2024: (Start)
E.g.f.: exp(x)*(x^2 + 6*x - 1) + 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
EXAMPLE
....... +---+ ......... The Cross of Lorraine
....... | + | ......... having n=2 crossbeams
... +---+---+---+ ..... consists of a(2)=13 squares
... | + | + | + |
... +---+---+---+
....... | + |
+---+---+---+---+---+
| + | + | + | + | + |
+---+---+---+---+---+
....... | + |
....... +---+
....... | + |
....... +---+
....... | + |
....... +---+
MAPLE
with (combinat):seq(fibonacci(3, n)+n-8, n=3..51); # Zerinvary Lajos, Jun 07 2008
MATHEMATICA
CoefficientList[Series[(5 + 3 x - x^2 - 5 x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2014 *)
Array[#^2 + 5 # - 1 &, 49] (* Michael De Vlieger, Jul 12 2017 *)
PROG
(Magma) [n^2+5*n-1: n in [1..40]]; // Vincenzo Librandi, Jun 11 2014
(PARI) a(n)=n^2+5*n-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Jun 15 2005
STATUS
approved