login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108118
Integers not divisible by 3 or 4.
3
1, 2, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 25, 26, 29, 31, 34, 35, 37, 38, 41, 43, 46, 47, 49, 50, 53, 55, 58, 59, 61, 62, 65, 67, 70, 71, 73, 74, 77, 79, 82, 83, 85, 86, 89, 91, 94, 95, 97, 98, 101, 103, 106, 107, 109, 110, 113, 115, 118, 119, 121, 122, 125, 127, 130, 131
OFFSET
1,2
COMMENTS
Or, numbers congruent to {1, 2, 5, 7, 10, 11} mod 12 (cf. A007310). Expand (x+x^2+x^5+x^7+x^10+x^11)/(1-x^12) (cf. A007310). All terms, except 35 and 70, are also in A099477.
FORMULA
G.f.: x*(1+x^2)^2 / ( (1+x)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = 2*a(n-1) - a(n-2) - a(n-3) + 2*a(n-4) - a(n-5) for n>5.
a(n) = a(n-6) + 12 for n>6.
a(n) = (6*n - 3 + cos(n*Pi/3) - cos(n*Pi) - sqrt(3)*sin(n*Pi/3))/3.
a(6k) = 12k-1, a(6k-1) = 12k-2, a(6k-2) = 12k-5, a(6k-3) = 12k-7, a(6k-4) = 12k-10, a(6k-5) = 12k-11. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (4-sqrt(3))*Pi/12. - Amiram Eldar, Jan 01 2022
MAPLE
A108118:=n->12*floor(n/6)+[1, 2, 5, 7, 10, 11][(n mod 6)+1]: seq(A108118(n), n=0..100); # Wesley Ivan Hurt, Jul 22 2016
MATHEMATICA
Select[ Range[132], !IntegerQ[ #/4] && !IntegerQ[ #/3] &] (* or *) Flatten[ NestList[12 + # &, {1, 2, 5, 7, 10, 11}, 10]]
PROG
(Magma) [n : n in [0..150] | n mod 12 in [1, 2, 5, 7, 10, 11]]; // Wesley Ivan Hurt, Jul 22 2016
CROSSREFS
Sequence in context: A046880 A142879 A284167 * A099477 A261034 A330777
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Jun 04 2005
STATUS
approved