login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108117
Numbers n such that prime(k)*n+prime(k+1), for k=1,...,7 all are primes.
2
3494, 60674, 75494, 1122584, 2136044, 2473934, 3367244, 5600384, 6629804, 6910784, 7554644, 8572904, 10079144, 11848094, 11892164, 12043214, 12167594, 12269234, 12507284, 12700154, 13459664, 13924544, 14495354, 15005954, 16890914, 17827094, 20642984, 25796054
OFFSET
1,1
COMMENTS
The only n, for which also 19*3494+23 is prime, is n=5600384. In principle, n == 4 (mod 10) can give primes of the form prime(k)*n+prime(k+1), for all k from 1 up to 41, while prime(42)*4+prime(43)=181*4+191 == 5 (mod 10) that is nonprime. It'd be very interesting to find at least one n such that prime(k)*n+prime(k+1), k=1,...,41 are all prime.
There are no values of n such that prime(k)*n+prime(k+1), k=1,...,9 are all prime. Proof: If n = 3*i then 2*(3*i)+3 = 3*(2*i+1) is not prime. If n = 3*i+1 then 5*(3*i+1)+7 = 3*(5*i+4) is not prime. If n = 3*i+2 then 23*(3*i+2)+29 = 3*(23*i+25) is not prime. - Jason Yuen, Sep 02 2024
EXAMPLE
3494 is OK because 2*3494+3, 3*3494+5, 5*3494+7, 7*3494+11, 11*3494+13, 13*3494+17 and 17*3494+19 all are primes.
MATHEMATICA
s={}; Do[If[Union[PrimeQ/@Table[Prime[k]*n+Prime[k+1], {k, 7}]]=={True}, s=Append[s, n]], {n, 4, 10000000, 10}]; s
Select[Range[9*10^6], AllTrue[Prime[Range[7]]#+Prime[Range[2, 8]], PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 24 2018 *)
PROG
(PARI) isok(n, upto=7)=for(k=1, upto, if(!isprime(prime(k)*n+prime(k+1)), return(0))); 1
for(n=1, 3*10^7, if(isok(n), print1(n", "))) \\ Jason Yuen, Sep 02 2024
CROSSREFS
Cf. A067076 (k=1), A088879 (k=2), A111224 (k=3), A101123 (k=4), A102721 (k=5), A108976 (k=7).
Cf. A108110 (k=1..6), A379427 (k=1..8).
Sequence in context: A204960 A249525 A252049 * A233992 A203845 A257316
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 03 2005
EXTENSIONS
a(13)-a(28) from Jason Yuen, Sep 02 2024
STATUS
approved