login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108080
Sum_{i=0..n} C(2n+i,n-i).
4
1, 3, 12, 50, 211, 895, 3805, 16193, 68940, 293526, 1249622, 5318976, 22634700, 96296410, 409573584, 1741574006, 7403616923, 31466106703, 133704121665, 568008916093, 2412570019447, 10245302874071, 43500597657111, 184670002546295, 783850164628721, 3326671128027805, 14116630429874265
OFFSET
0,2
COMMENTS
Apparently a bisection of A026847.
Row sums of A159965. - Paul Barry, Apr 28 2009
LINKS
FORMULA
From Paul Barry, Apr 28 2009: (Start)
G.f.: x/(x*sqrt(1-4x)-(1-2x-(1-3x)*c(x))), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n+k,j-k)*C(n,j). (End)
From Paul Barry, Sep 07 2009: (Start)
G.f.: (1/sqrt(1-4x))*(1/(1-xc(x)^3)), c(x) the g.f. of A000108.
a(n) = Sum_{k=0..n} C(2n,n-k)*F(k+1) = Sum_{k=0..n} C(2n,k)*F(n-k+1).
a(n) = Sum_{k=0..n} C(2k,k) * A165201(n-k). (End)
Recurrence: n*(17*n-93)*a(n) = 4*(34*n^2 - 189*n + 98)*a(n-1) - 5*(51*n^2 - 271*n + 252)*a(n-2) - 4*(17*n^2 - 184*n + 406)*a(n-3) + 44*(2*n-7) * a(n-4). - Vaclav Kotesovec, Oct 24 2012
a(n) ~ 1/2*(1+1/sqrt(5))*(sqrt(5)+2)^n. - Vaclav Kotesovec, Oct 24 2012
MATHEMATICA
CoefficientList[Series[x/(x*Sqrt[1-4*x]-(1-2*x-(1-3*x)*(1-Sqrt[1-4*x])/(2*x))), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 24 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(x/(x*sqrt(1-4*x)-(1-2*x-(1-3*x)*(1-sqrt(1-4*x))/(2*x)))) \\ Joerg Arndt, May 15 2013
CROSSREFS
Sequence in context: A229665 A092443 A356280 * A113441 A119976 A074547
KEYWORD
nonn
AUTHOR
Ralf Stephan, Jun 03 2005
STATUS
approved