The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A119976 E.g.f. exp(2x)*(Bessel_I(0,2*sqrt(2)x) + Bessel_I(1,2*sqrt(2)x)/sqrt(2)). 2
 1, 3, 12, 50, 216, 952, 4256, 19224, 87520, 400928, 1845888, 8533824, 39590656, 184216320, 859354112, 4017738112, 18820855296, 88317817344, 415075665920, 1953473141760, 9205135036416, 43425512132608, 205072796270592 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Binomial transform of A119975. Binomial transform is A047781(n+1). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 FORMULA G.f.: (1+2*x)/(4*x*sqrt(1-4*x-4*x^2))-1/(4*x); a(n) = Sum_{k=0..n} 2^(n-k)*C(n,k)*C(k,floor(k/2))2^floor(k/2). D-finite with recurrence: (n+1)*a(n) -2*(n+2)*a(n-1) +12*(1-n)*a(n-2) +8*(2-n)*a(n-3) = 0. - R. J. Mathar, Dec 10 2011 Shorter recurrence: n*(n+1)*a(n) = 2*n*(2*n+1)*a(n-1) + 4*(n-1)*(n+1)*a(n-2). - Vaclav Kotesovec, Oct 19 2012 a(n) ~ sqrt(20+14*sqrt(2))*(2+2*sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 19 2012 MATHEMATICA CoefficientList[Series[(1+2*x)/(4*x*Sqrt[1-4*x-4*x^2])-1/(4*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 19 2012 *) PROG (PARI) x='x+O('x^50); Vec((1+2*x)/(4*x*sqrt(1-4*x-4*x^2))-1/(4*x)) \\ G. C. Greubel, Feb 08 2017 (MAGMA) m:=50; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((1+2*x)/(4*x*Sqrt(1-4*x-4*x^2)) -1/(4*x))); // G. C. Greubel, Aug 17 2018 CROSSREFS Sequence in context: A092443 A108080 A113441 * A074547 A151178 A151179 Adjacent sequences:  A119973 A119974 A119975 * A119977 A119978 A119979 KEYWORD easy,nonn AUTHOR Paul Barry, Jun 02 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 14 10:04 EDT 2021. Contains 345025 sequences. (Running on oeis4.)