login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107802
a(1) = prime(2), for n >= 2, a(n) is the smallest prime not previously used which contains a digit from a(n-1).
14
3, 13, 11, 17, 7, 37, 23, 2, 29, 19, 31, 41, 43, 47, 67, 61, 71, 73, 53, 5, 59, 79, 89, 83, 103, 101, 107, 97, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
OFFSET
1,1
COMMENTS
a(n) = prime(n) for almost all n. Probably a(n) = prime(n) for all n > N for some N, but N must be very large. - Charles R Greathouse IV, Jul 20 2011
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Jul 20 2011
MATHEMATICA
p=Prime[2]; b={p}; d=p; Do[Do[r=Prime[c]; If[FreeQ[b, r]&&Intersection@@IntegerDigits/@{d, r}=!={}, b=Append[b, r]; d=r; Break[]], {c, 1000}], {k, 60}]; b
PROG
(PARI) common(a, b)=a=vecsort(eval(Vec(Str(a))), , 8); b=vecsort(eval(Vec(Str(b))), , 8); #a+#b>#vecsort(concat(a, b), , 8)
in(v, x)=for(i=1, #v, if(v[i]==x, return(1))); 0
lista(nn) = {my(v=[3]); for(n=2, nn, forprime(p=2, default(primelimit), if(!in(v, p)&&common(v[#v], p), v=concat(v, p); break))); v; }
\\ Charles R Greathouse IV, Jul 20 2011
CROSSREFS
Cf. A107353.
Other cases of seed: A107801 (a(1) = 2), A107803 (a(1) = 5), A107804 (a(1) = 7), A107805 (a(1) = 11), A107806 (a(1) = 13), A107807 (a(1) = 17), A107808 (a(1) = 19), A107809 (a(1) = 23), A107810 (a(1) = 29), A107811 (a(1) = 31), A107812 (a(1) = 37), A107813 (a(1) = 41), A107814 (a(1) = 43).
Sequence in context: A376431 A340441 A085416 * A142351 A272837 A273576
KEYWORD
nonn,base
AUTHOR
Zak Seidov & Eric Angelini, May 24 2005
STATUS
approved