login
A106919
Primes of the form 3x^2+xy+5y^2, with x and y any integer.
3
3, 5, 7, 19, 29, 41, 53, 79, 107, 127, 137, 167, 181, 193, 199, 239, 241, 251, 257, 263, 271, 277, 281, 293, 307, 311, 331, 359, 379, 433, 449, 487, 491, 499, 523, 557, 577, 593, 599, 607, 617, 619, 643, 647, 653, 661, 709, 757, 761, 829, 853, 877, 883, 907
OFFSET
1,1
COMMENTS
Discriminant=-59.
Primes p such that the polynomial x^3-2x^2-1 is irreducible over Zp. The polynomial discriminant is also -59. - T. D. Noe, May 13 2005
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
MATHEMATICA
Union[QuadPrimes2[3, 1, 5, 10000], QuadPrimes2[3, -1, 5, 10000]] (* see A106856 *)
CROSSREFS
Sequence in context: A184805 A079131 A179687 * A005850 A052334 A373292
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved