login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes of the form 3x^2+xy+5y^2, with x and y any integer.
3

%I #20 Aug 05 2014 14:16:29

%S 3,5,7,19,29,41,53,79,107,127,137,167,181,193,199,239,241,251,257,263,

%T 271,277,281,293,307,311,331,359,379,433,449,487,491,499,523,557,577,

%U 593,599,607,617,619,643,647,653,661,709,757,761,829,853,877,883,907

%N Primes of the form 3x^2+xy+5y^2, with x and y any integer.

%C Discriminant=-59.

%C Primes p such that the polynomial x^3-2x^2-1 is irreducible over Zp. The polynomial discriminant is also -59. - _T. D. Noe_, May 13 2005

%H Vincenzo Librandi and Ray Chandler, <a href="/A106919/b106919.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t Union[QuadPrimes2[3, 1, 5, 10000], QuadPrimes2[3, -1, 5, 10000]] (* see A106856 *)

%K nonn,easy

%O 1,1

%A _T. D. Noe_, May 09 2005