
COMMENTS

These are "subscript" primes, similar to those listed in Table 30 of the Primal Configurations document. Only 3731, 7093 and 8009 have been proved prime. The others are Fermat and Lucas PRPs. Primality proof for the largest (14003 digits): PFGW Version 20041001.Win_Stable (v1.2 RC1b) [FFT v23.8] Primality testing (r(666,1)*10^5328+r(666,2)*10^4662+r(666,3)*10^3996+r(666,4)*10^3330+r(666,5)*10^2664+r(666,6)*10^1998+r(666,7)*10^1332+r(666,8)*10^666+r(666,9))*10^8009+1 [N1, BrillhartLehmerSelfridge] Running N1 test using base 17 (r(666,1)*10^5328+r(666,2)*10^4662+r(666,3)*10^3996+r(666,4)*10^3330+r(666,5)*10^2664+r(666,6)*10^1998+r(666,7)*10^1332+r(666,8)*10^666+r(666,9))*10^8009+1 is prime! (38.8002s+0.0106s)
