login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206164
Number of (n+1) X 4 0..3 arrays with every 2 X 2 subblock in a row having an equal number of equal diagonal or equal antidiagonal elements, adjacent rows differing in this number, and new values 0..3 introduced in row major order.
1
641, 14182, 463878, 10599630, 345652310, 7934434238, 257597022598, 5939045721006, 191982939898678, 4445181274166302, 143088306500843366, 3326865018494656782, 106651001017976490518, 2489743322080060401278
OFFSET
1,1
COMMENTS
Column 3 of A206169.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 745*a(n-2) - 489*a(n-3) - 5808*a(n-4) + 1584*a(n-5) + 10368*a(n-6) for n>7.
Empirical g.f.: x*(641 + 13541*x - 27849*x^2 - 116389*x^3 + 121496*x^4 + 247632*x^5 - 70272*x^6) / ((1 - x - 4*x^2)*(1 - 741*x^2 - 252*x^3 + 2592*x^4)). - Colin Barker, Jun 13 2018
EXAMPLE
Some solutions for n=4:
..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0....0..1..1..2
..0..1..0..0....0..1..0..0....0..1..0..1....0..0..0..0....1..1..0..1
..2..1..2..2....0..1..2..1....1..0..1..0....1..0..1..0....0..3..0..1
..2..2..2..3....3..0..1..0....1..0..1..3....1..3..3..2....2..0..1..1
..1..3..1..0....1..2..1..2....0..0..0..1....1..1..3..3....2..3..2..2
CROSSREFS
Cf. A206169.
Sequence in context: A106488 A259997 A256806 * A206378 A229851 A268840
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 04 2012
STATUS
approved