login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106487
Number of leaves in combinatorial game trees.
3
1, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5
OFFSET
0,4
COMMENTS
See the comment at A106486.
After n=0 differs from A000120 for the first time at n=64, where A000120(64)=1, while a(64)=2.
EXAMPLE
3 = 2^0 + 2^1 = 2^(2*0) + 2^((2*0)+1) encodes the CGT tree \/ which has two terminal nodes, thus a(3)=2.
64 = 2^6 = 2^(2*3), i.e. it encodes the CGT tree
\/
.\
which also has two terminal (non-root) nodes, so a(64)=2.
PROG
(Scheme:) (define (A106487 n) (cond ((zero? n) 1) (else (apply + (map A106487 (map shr (on-bit-indices n))))))) (define (shr n) (if (odd? n) (/ (- n 1) 2) (/ n 2))) (define (on-bit-indices n) (let loop ((n n) (i 0) (c (list))) (cond ((zero? n) (reverse! c)) ((odd? n) (loop (/ (- n 1) 2) (1+ i) (cons i c))) (else (loop (/ n 2) (1+ i) c)))))
CROSSREFS
Sequence in context: A105164 A000120 A105062 * A105102 A105105 A178677
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 21 2005
STATUS
approved