OFFSET
0,3
COMMENTS
This map from the multiplicative domain of N to that of GF(2)[X] preserves Catalan-family structures, e.g. A106454(n) = a(A075164(n)), A075163(n) = A106453(a(n)), A075165(n) = A106455(a(n)), A075166(n) = A106456(a(n)), A075167(n) = A106457(a(n)). Shares with A091202 and A106444 the property that maps A000040(n) to A014580(n). Differs from the former for the first time at n=32, where A091202(32)=32, while a(32)=128. Differs from the latter for the first time at n=48, where A106444(48)=48, while a(48)=192.
LINKS
FORMULA
a(0)=0, a(1)=1, a(p_i) = A014580(i) for primes p_i with index i and for composites n = p_i^e_i * p_j^e_j * p_k^e_k * ..., a(n) = A048723(a(p_i), a(e_i)) X A048723(a(p_j), a(1+e_j)-1) X A048723(a(p_k), a(1+e_k)-1) X ..., where X stands for carryless multiplication of GF(2)[X] polynomials (A048720) and A048723(n, y) raises the n-th GF(2)[X] polynomial to the y:th power. Here p_i is the most significant prime in the factorization of n; its exponent e_i is not incremented before the recursion step, while the exponents of less significant primes e_j, e_k, ... are incremented by one before recursing and the result of the recursion is decremented by one before use.
EXAMPLE
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 09 2005
STATUS
approved