login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106421
Smallest number beginning with 1 and having exactly n prime divisors counted with multiplicity.
27
1, 11, 10, 12, 16, 108, 144, 128, 1296, 1152, 1024, 10368, 10240, 12288, 16384, 110592, 147456, 131072, 1327104, 1179648, 1048576, 10616832, 10485760, 12582912, 16777216, 113246208, 100663296, 134217728, 1006632960, 1207959552
OFFSET
0,2
LINKS
EXAMPLE
a(0) = 1, a(5) = 108 = 2^2*3^3.
MAPLE
f:= proc(n) uses priqueue; local pq, t, p, x, i;
initialize(pq);
insert([-2^n, 2$n], pq);
do
t:= extract(pq);
x:= -t[1];
if floor(x/10^ilog10(x)) = 1 then return x fi;
p:= nextprime(t[-1]);
for i from n+1 to 2 by -1 while t[i] = t[-1] do
insert([t[1]*(p/t[-1])^(n+2-i), op(t[2..i-1]), p$(n+2-i)], pq)
od;
od
end proc:
f(0):= 1:
map(f, [$0..50]); # Robert Israel, Sep 06 2024
PROG
(Python)
from itertools import count
from math import isqrt, prod
from sympy import primerange, integer_nthroot, primepi
def A106421(n):
if n <= 1: return 1+10*n
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, n)))
for l in count(len(str(1<<n))-1):
kmin, kmax = 10**l-1, 2*10**l-1
mmin, mmax = f(kmin), f(kmax)
if mmax>mmin:
while kmax-kmin > 1:
kmid = kmax+kmin>>1
mmid = f(kmid)
if mmid > mmin:
kmax, mmax = kmid, mmid
else:
kmin, mmin = kmid, mmid
return kmax # Chai Wah Wu, Sep 12 2024
KEYWORD
base,nonn
AUTHOR
Ray Chandler, May 02 2005
STATUS
approved