login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106418
Smallest number beginning with 8 that is the product of exactly n distinct primes.
2
83, 82, 805, 858, 8610, 81510, 870870, 80150070, 800509710, 8254436190, 800680310430, 8222980095330, 800160280950030, 80008785365579070, 843685980760953330, 80058789202898516010, 8003887646839494820410
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 805 = 5*7*23.
PROG
(Python)
from itertools import count
from math import prod, isqrt
from sympy import primerange, integer_nthroot, primepi, primorial
def A106418(n):
if n == 1: return 83
def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b+1, isqrt(x//c)+1), a+1)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b+1, integer_nthroot(x//c, m)[0]+1), a+1) for d in g(x, a2, b2, c*b2, m-1)))
def f(x): return int(sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x, 0, 1, 1, n)))
def bisection(f, kmin, kmax, mmin, mmax):
while kmax-kmin > 1:
kmid = kmax+kmin>>1
mmid = f(kmid)
if mmid > mmin:
kmax, mmax = kmid, mmid
else:
kmin, mmin = kmid, mmid
return kmax
for l in count(len(str(primorial(n)))-1):
kmin, kmax = 8*10**l-1, 9*10**l-1
mmin, mmax = f(kmin), f(kmax)
if mmax>mmin: return bisection(f, kmin, kmax, mmin, mmax) # Chai Wah Wu, Aug 31 2024
KEYWORD
base,nonn
AUTHOR
Ray Chandler, May 02 2005
STATUS
approved