login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106318 Bhaskara twins: n such that 2*n^2 = X^3 and 2*n^3 = Y^2. 7
2, 128, 1458, 8192, 31250, 93312, 235298, 524288, 1062882, 2000000, 3543122, 5971968, 9653618, 15059072, 22781250, 33554432, 48275138, 68024448, 94091762, 128000000, 171532242, 226759808, 296071778, 382205952, 488281250, 617831552 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

S. S. Gupta, 'Bhaskara Pairs' in 'Science Today' (subsequently renamed '2001'), January 1988, pp. 68, Times of India, Mumbai.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Richard J. Mathar, Construction of Bhaskara Pairs, arXiv:1703.01677 [math.NT], 2017.

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

a(n) = 2*n^6 = 2*A001014(n).

G.f.: 2*(1+x)*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^7. - Colin Barker, Apr 18 2012

MATHEMATICA

LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {2, 128, 1458, 8192, 31250, 93312, 235298}, 30] (* Harvey P. Dale, May 11 2017 *)

PROG

(PARI) a(n)=2*n^6 \\ Charles R Greathouse IV, Feb 09 2012

(Haskell)

a106318 = (* 2) . (^ 6)  -- Reinhard Zumkeller, May 27 2015

CROSSREFS

Cf. A106319, A106320, A106321, A106322.

Cf. A001014.

Sequence in context: A106319 A226403 A106320 * A202748 A322308 A277757

Adjacent sequences:  A106315 A106316 A106317 * A106319 A106320 A106321

KEYWORD

nice,nonn,easy

AUTHOR

Lekraj Beedassy, Apr 29 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 16:06 EST 2018. Contains 318077 sequences. (Running on oeis4.)