Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Apr 23 2021 12:14:51
%S 2,128,1458,8192,31250,93312,235298,524288,1062882,2000000,3543122,
%T 5971968,9653618,15059072,22781250,33554432,48275138,68024448,
%U 94091762,128000000,171532242,226759808,296071778,382205952,488281250,617831552
%N Bhaskara twins: n such that 2*n^2 = X^3 and 2*n^3 = Y^2.
%D S. S. Gupta, 'Bhaskara Pairs' in 'Science Today' (subsequently renamed '2001'), January 1988, pp. 68, Times of India, Mumbai.
%H Reinhard Zumkeller, <a href="/A106318/b106318.txt">Table of n, a(n) for n = 1..10000</a>
%H Richard J. Mathar, <a href="https://arxiv.org/abs/1703.01677">Construction of Bhaskara Pairs</a>, arXiv:1703.01677 [math.NT], 2017.
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1).
%F a(n) = 2*n^6 = 2*A001014(n).
%F G.f.: 2*(1+x)*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^7. - _Colin Barker_, Apr 18 2012
%F a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). - _Wesley Ivan Hurt_, Apr 23 2021
%t LinearRecurrence[{7,-21,35,-35,21,-7,1},{2,128,1458,8192,31250,93312,235298},30] (* _Harvey P. Dale_, May 11 2017 *)
%o (PARI) a(n)=2*n^6 \\ _Charles R Greathouse IV_, Feb 09 2012
%o (Haskell)
%o a106318 = (* 2) . (^ 6) -- _Reinhard Zumkeller_, May 27 2015
%Y Cf. A106319, A106320, A106321, A106322.
%Y Cf. A001014.
%K nice,nonn,easy
%O 1,1
%A _Lekraj Beedassy_, Apr 29 2005