login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105927 Let d(n) = A000166(n); then a(n) = ( (n^2+n-1)*d(n) + (-1)^(n-1)*(n-1) )/2. 2
0, 0, 2, 12, 84, 640, 5430, 50988, 526568, 5940576, 72755370, 961839340, 13656650172, 207316760352, 3351430059614, 57487448630220, 1042952206111440, 19954639072648768, 401578933206288978, 8480263630552747596, 187505565234912994340, 4332318322289242716480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Wang, Miska, & Mező call these 2-derangement numbers.

Number of permutations p of [n] such that p(k) = k+2 for exactly two k in the range 0<k<n-1, (offset 2). - Vladeta Jovovic, Dec 14 2007

Number of derangements of the multiset {0,0,1,2,...,n}. For example a(3)=12 because we have: {1,2,0,3,0}, {1,2,3,0,0}, {1,3,0,0,2}, {1,3,2,0,0}, {2,1,0,3,0}, {2,1,3,0,0}, {2,3,0,0,1}, {2,3,0,1,0}, {3,1,0,0,2}, {3,1,2,0,0}, {3,2,0,0,1}, {3,2,0,1,0}. - Geoffrey Critzer, Jun 02 2014

Number of derangements of a set of n + 2 elements such that the first two elements belong to distinct cycles. - Istvan Mezo, Apr 05 2017

REFERENCES

P. A. MacMahon, Combinatory Analysis, 2 vols., Chelsea, NY, 1960, see p. 108.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..300

C.-Y. Wang, P. Miska, I. Mező, The r-derangement numbers, Discrete Mathematics 340.7 (2017): 1681-1692.

FORMULA

a(n) = n*(n-1)*(a(n-1) + a(n-2))/(n-2) for n >= 3, a(n) = n*(n-1) for n < 3. - Alois P. Heinz, Jun 03 2014

a(n) ~ sqrt(Pi/2) * n^(n+5/2) / exp(n+1). - Vaclav Kotesovec, Sep 05 2014

a(n) = (n^2 + n + 1) * n!/e + O(1). - Charles R Greathouse IV, Apr 07 2017

MAPLE

a:= proc(n) option remember; `if`(n<3, n*(n-1),

n*(n-1)*(a(n-1)+a(n-2))/(n-2))

end:

seq(a(n), n=0..25); # Alois P. Heinz, Jun 03 2014

MATHEMATICA

Table[(Subfactorial[n+2]-2Subfactorial[n+1]-Subfactorial[n])/2, {n, 0, 21}] (* Geoffrey Critzer, Jun 02 2014 *)

PROG

(PARI) s(n) = if( n<1, 1, n * s(n-1) + (-1)^n);

a(n) = (s(n + 2) - 2*s(n + 1) - s(n))/2; \\ Indranil Ghosh, Apr 06 2017

CROSSREFS

Cf. A000153, A018934, A055790.

Sequence in context: A319326 A214765 A006657 * A316702 A235351 A052887

Adjacent sequences: A105924 A105925 A105926 * A105928 A105929 A105930

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Apr 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 08:22 EST 2022. Contains 358693 sequences. (Running on oeis4.)