login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316702 E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*x^2. 4
1, 1, 2, 12, 84, 640, 6060, 70728, 941808, 13950144, 230971680, 4242680640, 85192002720, 1854377366400, 43570277097984, 1099505252240640, 29642211339068160, 850166713775554560, 25852506567901839360, 830856828456304128000, 28137892587325700198400, 1001532282143426144133120, 37379628178079964459217920, 1459734364264707546159513600 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
More generally, we have the following identity. Given the biexponential series
W(x,y) = Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + k*y,
then for fixed p and q,
Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k + p)*x + (k + q)*y = W(x,y)^(p+q+1) / ( (1 + x*W(x,y))^q * (1 + y*W(x,y))^p ).
Further, W(x,y) satisfies the biexponential functional equation
( W(x,y)/(1 + x*W(x,y)) )^x = ( W(x,y)/(1 + y*W(x,y)) )^y.
LINKS
FORMULA
E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies:
(1) A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*x^2.
(2) Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k + p) + (k + q)*x^2 = A(x)^(p+q+1) / ( (1 + x*A(x))^q * (1 + x^3*A(x))^p ), for fixed p and q.
(3) A(x)/(1 + x*A(x)) = ( A(x)/(1 + x^3*A(x)) )^(x^2).
a(n) ~ 3^((n+1)/2) * n! / sqrt(Pi*log(3)*n). - Vaclav Kotesovec, Jul 15 2018
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 84*x^4/4! + 640*x^5/5! + 6060*x^6/6! + 70728*x^7/7! + 941808*x^8/8! + 13950144*x^9/9! + 230971680*x^10/10! + ...
such that
A(x) = 1 + (1 + x^2)*x + (2 + x^2)*(1 + 2*x^2)*x^2/2! + (3 + x^2)*(2 + 2*x^2)*(1 + 3*x^2)*x^3/3! + (4 + x^2)*(3 + 2*x^2)*(2 + 3*x^2)*(1 + 4*x^2)*x^4/4! + (5 + x^2)*(4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*(1 + 5*x^2)*x^5/5! + ...
Also,
A(x)^2/(1 + x*A(x)) = 1 + (1 + 2*x^2)*x + (2 + 2*x^2)*(1 + 3*x^2)*x^2/2! + (3 + 2*x^2)*(2 + 3*x^2)*(1 + 4*x^2)*x^3/3! + (4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*(1 + 5*x^2)*x^4/4! + (5 + 2*x^2)*(4 + 3*x^2)*(3 + 4*x^2)*(2 + 5*x^2)*(1 + 6*x^2)*x^5/5! + ...
And,
A(x)^3/((1 + x*A(x))*(1 + x^3*A(x))) = 1 + (2 + 2*x^2)*x + (3 + 2*x^2)*(2 + 3*x^2)*x^2/2! + (4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*x^3/3! + (5 + 2*x^2)*(4 + 3*x^2)*(3 + 4*x^2)*(2 + 5*x^2)*x^4/4! + (6 + 2*x^2)*(5 + 3*x^2)*(4 + 4*x^2)*(3 + 5*x^2)*(2 + 6*x^2)*x^5/5! + ...
RELATED SERIES.
A(x)/(1 + x*A(x)) = 1 + 6*x^3/3! + 12*x^4/4! + 40*x^5/5! + 900*x^6/6! + 7728*x^7/7! + 68880*x^8/8! + 1031616*x^9/9! + ...
A(x)/(1 + x^3*A(x)) = 1 + x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 280*x^5/5! + 2460*x^6/6! + 25368*x^7/7! + 310128*x^8/8! + 4333824*x^9/9! + ...
where ( A(x)/(1 + x^3*A(x)) )^(x^2) = A(x)/(1 + x*A(x)).
MATHEMATICA
nmax = 20; CoefficientList[Series[Sum[(x^k*(x^2 - 1)^k * Pochhammer[(k + x^2)/(x^2 - 1), k])/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 15 2018 *)
PROG
(PARI) {a(n) = my(A=1); A = sum(m=0, n, x^m/m! * prod(k=1, m, m+1-k + k*x^2 +x*O(x^n))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A214765 A006657 A105927 * A235351 A362245 A362237
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 13 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 03:07 EST 2023. Contains 367594 sequences. (Running on oeis4.)