The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316702 E.g.f.: Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*x^2. 4
 1, 1, 2, 12, 84, 640, 6060, 70728, 941808, 13950144, 230971680, 4242680640, 85192002720, 1854377366400, 43570277097984, 1099505252240640, 29642211339068160, 850166713775554560, 25852506567901839360, 830856828456304128000, 28137892587325700198400, 1001532282143426144133120, 37379628178079964459217920, 1459734364264707546159513600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS More generally, we have the following identity. Given the biexponential series W(x,y) = Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k)*x + k*y, then for fixed p and q, Sum_{n>=0} 1/n! * Product_{k=1..n} (n+1-k + p)*x + (k + q)*y = W(x,y)^(p+q+1) / ( (1 + x*W(x,y))^q * (1 + y*W(x,y))^p ). Further, W(x,y) satisfies the biexponential functional equation ( W(x,y)/(1 + x*W(x,y)) )^x = ( W(x,y)/(1 + y*W(x,y)) )^y. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..300 FORMULA E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies: (1) A(x) = Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k) + k*x^2. (2) Sum_{n>=0} x^n/n! * Product_{k=1..n} (n+1-k + p) + (k + q)*x^2 = A(x)^(p+q+1) / ( (1 + x*A(x))^q * (1 + x^3*A(x))^p ), for fixed p and q. (3) A(x)/(1 + x*A(x)) = ( A(x)/(1 + x^3*A(x)) )^(x^2). a(n) ~ 3^((n+1)/2) * n! / sqrt(Pi*log(3)*n). - Vaclav Kotesovec, Jul 15 2018 EXAMPLE E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 84*x^4/4! + 640*x^5/5! + 6060*x^6/6! + 70728*x^7/7! + 941808*x^8/8! + 13950144*x^9/9! + 230971680*x^10/10! + ... such that A(x) = 1 + (1 + x^2)*x + (2 + x^2)*(1 + 2*x^2)*x^2/2! + (3 + x^2)*(2 + 2*x^2)*(1 + 3*x^2)*x^3/3! + (4 + x^2)*(3 + 2*x^2)*(2 + 3*x^2)*(1 + 4*x^2)*x^4/4! + (5 + x^2)*(4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*(1 + 5*x^2)*x^5/5! + ... Also, A(x)^2/(1 + x*A(x)) = 1 + (1 + 2*x^2)*x + (2 + 2*x^2)*(1 + 3*x^2)*x^2/2! + (3 + 2*x^2)*(2 + 3*x^2)*(1 + 4*x^2)*x^3/3! + (4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*(1 + 5*x^2)*x^4/4! + (5 + 2*x^2)*(4 + 3*x^2)*(3 + 4*x^2)*(2 + 5*x^2)*(1 + 6*x^2)*x^5/5! + ... And, A(x)^3/((1 + x*A(x))*(1 + x^3*A(x))) = 1 + (2 + 2*x^2)*x + (3 + 2*x^2)*(2 + 3*x^2)*x^2/2! + (4 + 2*x^2)*(3 + 3*x^2)*(2 + 4*x^2)*x^3/3! + (5 + 2*x^2)*(4 + 3*x^2)*(3 + 4*x^2)*(2 + 5*x^2)*x^4/4! + (6 + 2*x^2)*(5 + 3*x^2)*(4 + 4*x^2)*(3 + 5*x^2)*(2 + 6*x^2)*x^5/5! + ... RELATED SERIES. A(x)/(1 + x*A(x)) = 1 + 6*x^3/3! + 12*x^4/4! + 40*x^5/5! + 900*x^6/6! + 7728*x^7/7! + 68880*x^8/8! + 1031616*x^9/9! + ... A(x)/(1 + x^3*A(x)) = 1 + x + 2*x^2/2! + 6*x^3/3! + 36*x^4/4! + 280*x^5/5! + 2460*x^6/6! + 25368*x^7/7! + 310128*x^8/8! + 4333824*x^9/9! + ... where ( A(x)/(1 + x^3*A(x)) )^(x^2) = A(x)/(1 + x*A(x)). MATHEMATICA nmax = 20; CoefficientList[Series[Sum[(x^k*(x^2 - 1)^k * Pochhammer[(k + x^2)/(x^2 - 1), k])/k!, {k, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 15 2018 *) PROG (PARI) {a(n) = my(A=1); A = sum(m=0, n, x^m/m! * prod(k=1, m, m+1-k + k*x^2 +x*O(x^n))); n!*polcoeff(A, n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A316370, A316700, A316701. Sequence in context: A214765 A006657 A105927 * A235351 A362245 A362237 Adjacent sequences: A316699 A316700 A316701 * A316703 A316704 A316705 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 13 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 03:07 EST 2023. Contains 367594 sequences. (Running on oeis4.)