login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105262
a(n)=number of tilings of a 4 X n rectangle using tiles that are either 1 X 1 squares or trominoes (here by a tromino we mean a 2 X 2 square with the upper right 1 X 1 square removed; no rotations allowed).
2
1, 1, 5, 13, 42, 126, 387, 1180, 3606, 11012, 33636, 102733, 313781, 958384, 2927209, 8940617, 27307465, 83405605, 254747014, 778077690, 2376494563, 7258563604, 22169941574, 67713990832, 206819875428, 631693101321, 1929389878185
OFFSET
0,3
LINKS
E. Deutsch, Counting tilings with L-tiles and squares, Problem 10877, Amer. Math. Monthly, 110 (March 2003), 245-246.
FORMULA
G.f.: ( 1-x^2-x^3 ) / ( (1+x)*(x^4-x^3-3*x^2-2*x+1) ).
a(n) = a(n-1)+5a(n-2)+4a(n-3)-a(n-5) for n>=5; a(0)=1, a(1)=1, a(2)=5, a(3)=13, a(4)=42.
MAPLE
a[0]:=1:a[1]:=1:a[2]:=5:a[3]:=13:a[4]:=42: for n from 5 to 30 do a[n]:=a[n-1]+5*a[n-2]+4*a[n-3]-a[n-5] od: seq(a[n], n=0..30);
CROSSREFS
Sequence in context: A316536 A211383 A066873 * A298234 A129789 A093576
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Apr 15 2005
STATUS
approved