login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105261
Values of n such that phi(n)=c(n)^2, where phi is the Euler totient function and c(n) is the product of the distinct prime factors of n (c(1)=1).
5
1, 8, 108, 250, 6174, 41154
OFFSET
1,2
COMMENTS
This sequence has exactly six terms (see the Monthly reference). phi(n)=A000010(n); c(n)=A007947(n).
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 108, p. 38, Ellipses, Paris 2008.
J.-M. De Koninck & A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 745 ; pp 95; 317-8, Ellipses Paris 2004.
J.-M. De Koninck & A. Mercier, 1001 Problems in Classical Number Theory, Problem 745 ; pp 80; 273-4, Amer. Math. Soc. Providence RI 2007.
EXAMPLE
8 is in the sequence because phi(8)=4 (1,3,5,7), c(8)=2 (2 being the only prime divisor of 8) and so phi(8)=c(8)^2.
MAPLE
with(numtheory): c:=proc(n) local div: div:=convert(factorset(n), list): product(div[j], j=1..nops(div)) end:p:=proc(n) if phi(n)=c(n)^2 then n else fi end: seq(p(n), n=1..42000);
MATHEMATICA
Select[Range[42000], EulerPhi[#] == Times @@ FactorInteger[#][[All, 1]]^2 & ] (* Jean-François Alcover, Sep 12 2011 *)
CROSSREFS
Sequence in context: A365818 A239985 A274892 * A187288 A275134 A187190
KEYWORD
fini,nonn,full
AUTHOR
Emeric Deutsch, Apr 14 2005
STATUS
approved