login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)=number of tilings of a 4 X n rectangle using tiles that are either 1 X 1 squares or trominoes (here by a tromino we mean a 2 X 2 square with the upper right 1 X 1 square removed; no rotations allowed).
2

%I #9 Jul 26 2022 12:32:29

%S 1,1,5,13,42,126,387,1180,3606,11012,33636,102733,313781,958384,

%T 2927209,8940617,27307465,83405605,254747014,778077690,2376494563,

%U 7258563604,22169941574,67713990832,206819875428,631693101321,1929389878185

%N a(n)=number of tilings of a 4 X n rectangle using tiles that are either 1 X 1 squares or trominoes (here by a tromino we mean a 2 X 2 square with the upper right 1 X 1 square removed; no rotations allowed).

%H E. Deutsch, <a href="https://www.jstor.org/stable/3647950">Counting tilings with L-tiles and squares</a>, Problem 10877, Amer. Math. Monthly, 110 (March 2003), 245-246.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,5,4,0,-1).

%F G.f.: ( 1-x^2-x^3 ) / ( (1+x)*(x^4-x^3-3*x^2-2*x+1) ).

%F a(n) = a(n-1)+5a(n-2)+4a(n-3)-a(n-5) for n>=5; a(0)=1, a(1)=1, a(2)=5, a(3)=13, a(4)=42.

%p a[0]:=1:a[1]:=1:a[2]:=5:a[3]:=13:a[4]:=42: for n from 5 to 30 do a[n]:=a[n-1]+5*a[n-2]+4*a[n-3]-a[n-5] od: seq(a[n],n=0..30);

%K nonn,easy

%O 0,3

%A _Emeric Deutsch_, Apr 15 2005