login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105082 G.f. (5+4x)/(1-2x-x^2). 3
5, 14, 33, 80, 193, 466, 1125, 2716, 6557, 15830, 38217, 92264, 222745, 537754, 1298253, 3134260, 7566773, 18267806, 44102385, 106472576, 257047537, 620567650, 1498182837, 3616933324, 8732049485, 21081032294, 50894114073 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A floretion-generated, Pellian related sequence.

For n > 0: A048696(n) = a(n) - a(n-1). - Reinhard Zumkeller, Dec 15 2013

REFERENCES

A. F. Horadam, Pell Identities, Fibonacci Quarterly, Vol. 9, No. 3, 1971, pp. 245-252.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (2,1).

FORMULA

a(n+2) = 2*a(n+1) + a(n); FAMP result: a(n) = 2*A001333(n) + 3*A048654(n); SuperSeeker results: a(n+1) - a(n) = A048696(n+1); a(n) + a(n+1) = A048696(n+2)

a(n)=((9+5*sqrt(2))*(1+sqrt(2))^n - (9-5*sqrt(2))*(1-sqrt(2))^n)/(2*sqrt(2)) - Lambert Herrgesell (zero815(AT)googlemail.com), Jan 26 2007

PROG

Floretion Algebra Multiplication Program, FAMP Code: lesloop(infty)-tesforseq[ + .25'i + .25i' - .25'ii' - .25'jj' - .25'kk' + .25'jk' + .25'kj' - .25e ], Fortype: 1A.

(Haskell)

a105082 n = a105082_list !! n

a105082_list = scanl (+) 5 $ tail a048696_list

-- Reinhard Zumkeller, Dec 15 2013

CROSSREFS

Cf. A001333, A048654, A048696.

Cf. A048772.

Sequence in context: A038090 A094002 A188589 * A059821 A182738 A192957

Adjacent sequences:  A105079 A105080 A105081 * A105083 A105084 A105085

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Apr 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 25 15:14 EDT 2017. Contains 284082 sequences.