login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A105082 G.f. (5+4x)/(1-2x-x^2). 3
5, 14, 33, 80, 193, 466, 1125, 2716, 6557, 15830, 38217, 92264, 222745, 537754, 1298253, 3134260, 7566773, 18267806, 44102385, 106472576, 257047537, 620567650, 1498182837, 3616933324, 8732049485, 21081032294, 50894114073 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

A floretion-generated, Pellian related sequence.

For n > 0: A048696(n) = a(n) - a(n-1). - Reinhard Zumkeller, Dec 15 2013

REFERENCES

A. F. Horadam, Pell Identities, Fibonacci Quarterly, Vol. 9, No. 3, 1971, pp. 245-252.

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (2,1).

FORMULA

a(n+2) = 2*a(n+1) + a(n); FAMP result: a(n) = 2*A001333(n) + 3*A048654(n); SuperSeeker results: a(n+1) - a(n) = A048696(n+1); a(n) + a(n+1) = A048696(n+2)

a(n)=((9+5*sqrt(2))*(1+sqrt(2))^n - (9-5*sqrt(2))*(1-sqrt(2))^n)/(2*sqrt(2)) - Lambert Herrgesell (zero815(AT)googlemail.com), Jan 26 2007

PROG

Floretion Algebra Multiplication Program, FAMP Code: lesloop(infty)-tesforseq[ + .25'i + .25i' - .25'ii' - .25'jj' - .25'kk' + .25'jk' + .25'kj' - .25e ], Fortype: 1A.

(Haskell)

a105082 n = a105082_list !! n

a105082_list = scanl (+) 5 $ tail a048696_list

-- Reinhard Zumkeller, Dec 15 2013

CROSSREFS

Cf. A001333, A048654, A048696.

Cf. A048772.

Sequence in context: A038090 A094002 A188589 * A059821 A296010 A182738

Adjacent sequences:  A105079 A105080 A105081 * A105083 A105084 A105085

KEYWORD

nonn,easy

AUTHOR

Creighton Dement, Apr 06 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 23:21 EDT 2018. Contains 315306 sequences. (Running on oeis4.)