login
A188589
Expansion of (1-3*x+6*x^2-3*x^3)/((1-x)^2*(1-2*x)).
2
1, 1, 5, 14, 33, 72, 151, 310, 629, 1268, 2547, 5106, 10225, 20464, 40943, 81902, 163821, 327660, 655339, 1310698, 2621417, 5242856, 10485735, 20971494, 41943013, 83886052, 167772131, 335544290, 671088609, 1342177248, 2684354527
OFFSET
0,3
COMMENTS
Second column of the 1-Euler triangle A188587. In general, the second column of the r-Euler triangle has g.f. (1-(4-r)*x+2*(4-r)*x^2-(4-r)*x^3)/((1-x)^2*(1-2*x)).
FORMULA
a(n+1)=A094002(n).
a(n) = 5*2^(n-1)-n-3, n>0.
MATHEMATICA
CoefficientList[Series[(1-3x+6x^2-3x^3)/((1-x)^2(1-2x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{4, -5, 2}, {1, 1, 5, 14}, 40] (* Harvey P. Dale, Nov 26 2017 *)
PROG
(PARI) a(n) = if (n==0, 1, 5*2^(n-1) - n - 3) \\ Michel Marcus, Jul 24 2013
CROSSREFS
Sequence in context: A014302 A038090 A094002 * A105082 A059821 A296010
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 04 2011
STATUS
approved