login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105047
Form an addition table of the primes; a(n) is the number of even numbers that appear for the first time in column n.
3
1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 5, 4, 5, 3, 4, 3, 3, 7, 4, 5, 4, 3, 5, 5, 6, 5, 5, 4, 4, 3, 7, 5, 5, 7, 5, 5, 6, 4, 6, 5, 5, 7, 4, 6, 5, 4, 6, 5, 8, 5, 7, 4, 5, 6, 5, 3, 3, 8, 8, 5, 4, 5, 8, 8, 5, 5, 9, 4, 8, 7, 7, 6, 6, 5, 5, 7, 5, 7, 7, 6, 6, 6, 6, 5, 7, 7, 6, 6, 5, 6, 5, 5, 7, 4, 8, 4, 8, 5, 8, 7, 8, 9, 7, 5, 9
OFFSET
1,3
COMMENTS
For n > 2: a(n) = A102696(n-1) - A102696(n-2); a(n+1) = length of n-th row in the triangle A260580. - Reinhard Zumkeller, Aug 11 2015
EXAMPLE
The addition table is as follows:
+ | 2 3 5 7 11
--+--------------
2 | 4 5 7 9 13
3 | 6 8 10 14
5 | 10 12 16
7 | 14 18
11 | 22
PROG
(PARI) lista(n) = {maxp = prime(n); v = vector(maxp); forprime (p=1, maxp, nb = 0; forprime (q=1, p, s = p+q; if (! (s % 2), if (!v[s/2], nb++); v[s/2] = 1; ); ); print1(nb, ", "); ); } \\ Michel Marcus, Apr 18 2013
(Haskell)
a105047 1 = 1
a105047 n = length $ a260580_row (n - 1)
-- Reinhard Zumkeller, Aug 11 2015
CROSSREFS
Sequence in context: A156081 A368991 A147954 * A331135 A089881 A251547
KEYWORD
nonn
AUTHOR
Andrew S. Plewe, Apr 06 2005
EXTENSIONS
More terms from Reinhard Zumkeller, Apr 19 2005
STATUS
approved