Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 13 2018 09:13:57
%S 1,1,2,2,3,3,3,3,3,3,5,4,5,3,4,3,3,7,4,5,4,3,5,5,6,5,5,4,4,3,7,5,5,7,
%T 5,5,6,4,6,5,5,7,4,6,5,4,6,5,8,5,7,4,5,6,5,3,3,8,8,5,4,5,8,8,5,5,9,4,
%U 8,7,7,6,6,5,5,7,5,7,7,6,6,6,6,5,7,7,6,6,5,6,5,5,7,4,8,4,8,5,8,7,8,9,7,5,9
%N Form an addition table of the primes; a(n) is the number of even numbers that appear for the first time in column n.
%C For n > 2: a(n) = A102696(n-1) - A102696(n-2); a(n+1) = length of n-th row in the triangle A260580. - _Reinhard Zumkeller_, Aug 11 2015
%H Reinhard Zumkeller, <a href="/A105047/b105047.txt">Table of n, a(n) for n = 1..1000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GoldbachPartition.html">Goldbach Partition</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>
%H <a href="/index/Go#Goldbach">Index entries for sequences related to Goldbach conjecture</a>
%e The addition table is as follows:
%e + | 2 3 5 7 11
%e --+--------------
%e 2 | 4 5 7 9 13
%e 3 | 6 8 10 14
%e 5 | 10 12 16
%e 7 | 14 18
%e 11 | 22
%o (PARI) lista(n) = {maxp = prime(n); v = vector(maxp); forprime (p=1, maxp, nb = 0; forprime (q=1, p, s = p+q; if (! (s % 2), if (!v[s/2], nb++); v[s/2] = 1;);); print1(nb, ", "););} \\ _Michel Marcus_, Apr 18 2013
%o (Haskell)
%o a105047 1 = 1
%o a105047 n = length $ a260580_row (n - 1)
%o -- _Reinhard Zumkeller_, Aug 11 2015
%Y Cf. A102696, A260580.
%K nonn
%O 1,3
%A _Andrew S. Plewe_, Apr 06 2005
%E More terms from _Reinhard Zumkeller_, Apr 19 2005