login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104476
a(n) = binomial(n+7,7)*binomial(n+11,7).
1
330, 6336, 61776, 411840, 2123550, 9060480, 33372768, 109219968, 324246780, 886828800, 2261413440, 5427392256, 12352970916, 26829982080, 55895796000, 112183843200, 217706770710, 409800980160, 750266946000, 1339149240000, 2335141487250, 3985308138240
OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (15,-105,455,-1365,3003,-5005,6435,-6435,5005,-3003,1365,-455,105,-15,1).
FORMULA
From Amiram Eldar, Sep 01 2022: (Start)
Sum_{n>=0} 1/a(n) = 539*Pi^2 - 114905813/21600.
Sum_{n>=0} (-1)^n/a(n) = 1741019/7200 - 49*Pi^2/2. (End)
EXAMPLE
a(0): C(0+7,7)*C(0+11,7) = C(7,7)*C(11,7) = 1*330 = 330;
a(7): C(7+7,7)*C(7+11,7) = C(14,7)*C(18,7) = 3432*31824 = 109219968.
MATHEMATICA
f[n_] := Binomial[n + 7, 7]*Binomial[n + 11, 7]; Table[ f[n], {n, 0, 19}] (* Robert G. Wilson v, Apr 20 2005 *)
PROG
(PARI) vector(30, n, n--; binomial(n+7, 7)*binomial(n+11, 7)) \\ Michel Marcus, Jul 31 2015
(Magma) [Binomial(n+7, 7)*Binomial(n+11, 7): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
(Python)
A104476_list, m = [], [3432, -1716, 660, 330, 330, 330, 330, 330, 330, 330, 330, 330, 330, 330, 330]
for _ in range(10**2):
A104476_list.append(m[-1])
for i in range(14):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
CROSSREFS
Sequence in context: A126997 A205993 A027807 * A140908 A256586 A319718
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Apr 18 2005
EXTENSIONS
More terms from Robert G. Wilson v, Apr 20 2005
STATUS
approved