login
A104182
Palindromes in the order in which they appear in Pascal's triangle, without repetition.
1
1, 2, 3, 4, 6, 5, 7, 8, 9, 252, 11, 55, 66, 1001, 2002, 3003, 5005, 8008, 171, 969, 22, 646646, 1771, 33, 595, 666, 3262623, 44, 77, 88, 99, 101, 5995, 111, 121, 131, 8778, 141, 151, 161, 15051, 181, 191, 202, 212, 222, 232, 242, 262, 272, 282, 292
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Pascal's Triangle
EXAMPLE
Some rows of Pascal's Triangle:
Row 9 = {1, 9, 36, 84, 126, 126, 84, 36, 9, 1}
Row 10 = {1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1}
Row 1l = {1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1}
Looking at this we see the palindromes of 9, 252, 11 and 55 in their order of appearance, without repetition.
MATHEMATICA
DeleteDuplicates[Select[Flatten[Table[Binomial[n, m], {n, 0, 300}, {m, 0, n}]], IntegerDigits[#]==Reverse[IntegerDigits[#]]&]] (* Harvey P. Dale, May 04 2014 *)
PROG
(PARI) ispal(v) = {for(i=1, #v\2, if (v[i] != v[#v-i+1], return(0)); ); return(1); }; lista(n) = {ret = vector(0); for (i=1, n, for (j=1, i, numb = binomial(i, j); if (ispal(digits(numb)), if (! vecsearch(vecsort(ret), numb), ret = concat(ret, numb)); ); ); ); print(ret); } \\ Michel Marcus, Jun 08 2013
CROSSREFS
Cf. A051641.
Sequence in context: A057164 A085175 A130111 * A371424 A371425 A361940
KEYWORD
nonn,base
AUTHOR
Andrew G. West (WestA(AT)wlu.edu), Mar 29 2005
EXTENSIONS
More terms from Michel Marcus, Jun 08 2013
STATUS
approved