login
A104180
Let f[n]=Prime[n+1]-Prime[n]; a(n) = Binomial[Prime[12],f[n]].
1
37, 666, 666, 66045, 666, 66045, 666, 66045, 2324784, 666, 2324784, 66045, 666, 66045, 2324784, 2324784, 666, 2324784, 66045, 666, 2324784, 66045, 2324784, 38608020, 66045, 666, 66045, 666, 66045, 6107086800, 66045, 2324784, 666
OFFSET
1,1
COMMENTS
A Mealy model is an even integer combinatorial model on a finite symbol base using a mapping of prime differences.
A type of cycling model for sequence based on the Mealy model for sequential machines: the function f is the memory element as a mapping and the Binomial is the combinatorial part. It is called a Mealy machine. Other mapping functions can be used in this general model for an n symbol cycle.
REFERENCES
Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, page 70.
MATHEMATICA
digits = 12 f[n_] = Prime[n + 1] - Prime[n] a = Table[Binomial[Prime[digits], f[n]], {n, 1, 16*digits}]
CROSSREFS
Sequence in context: A228225 A156923 A338003 * A010953 A355600 A161650
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Mar 11 2005
STATUS
approved