login
Let f[n]=Prime[n+1]-Prime[n]; a(n) = Binomial[Prime[12],f[n]].
1

%I #5 Mar 31 2012 20:35:48

%S 37,666,666,66045,666,66045,666,66045,2324784,666,2324784,66045,666,

%T 66045,2324784,2324784,666,2324784,66045,666,2324784,66045,2324784,

%U 38608020,66045,666,66045,666,66045,6107086800,66045,2324784,666

%N Let f[n]=Prime[n+1]-Prime[n]; a(n) = Binomial[Prime[12],f[n]].

%C A Mealy model is an even integer combinatorial model on a finite symbol base using a mapping of prime differences.

%C A type of cycling model for sequence based on the Mealy model for sequential machines: the function f is the memory element as a mapping and the Binomial is the combinatorial part. It is called a Mealy machine. Other mapping functions can be used in this general model for an n symbol cycle.

%D Taylor L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967, page 70.

%t digits = 12 f[n_] = Prime[n + 1] - Prime[n] a = Table[Binomial[Prime[digits], f[n]], {n, 1, 16*digits}]

%K nonn

%O 1,1

%A _Roger L. Bagula_, Mar 11 2005